Metamath Proof Explorer


Theorem islan2

Description: A left Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses islan.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
islan.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
islan.k 𝐾 = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
Assertion islan2 ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴𝐿 ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 islan.r 𝑅 = ( 𝐷 FuncCat 𝐸 )
2 islan.s 𝑆 = ( 𝐶 FuncCat 𝐸 )
3 islan.k 𝐾 = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
4 1 2 3 islan ( ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
5 df-br ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
6 df-br ( 𝐿 ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) )
7 4 5 6 3imtr4i ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴𝐿 ( 𝐾 ( 𝑅 UP 𝑆 ) 𝑋 ) 𝐴 )