Metamath Proof Explorer


Theorem lanval2

Description: The set of left Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by isup2 and upciclem1 . (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses islan.r
|- R = ( D FuncCat E )
islan.s
|- S = ( C FuncCat E )
islan.k
|- K = ( <. D , E >. -o.F F )
Assertion lanval2
|- ( F e. ( C Func D ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) )

Proof

Step Hyp Ref Expression
1 islan.r
 |-  R = ( D FuncCat E )
2 islan.s
 |-  S = ( C FuncCat E )
3 islan.k
 |-  K = ( <. D , E >. -o.F F )
4 1 2 3 islan
 |-  ( x e. ( F ( <. C , D >. Lan E ) X ) -> x e. ( K ( R UP S ) X ) )
5 4 adantl
 |-  ( ( F e. ( C Func D ) /\ x e. ( F ( <. C , D >. Lan E ) X ) ) -> x e. ( K ( R UP S ) X ) )
6 simpr
 |-  ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( K ( R UP S ) X ) )
7 simpl
 |-  ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> F e. ( C Func D ) )
8 2 fucbas
 |-  ( C Func E ) = ( Base ` S )
9 8 uprcl
 |-  ( x e. ( K ( R UP S ) X ) -> ( K e. ( R Func S ) /\ X e. ( C Func E ) ) )
10 9 simprd
 |-  ( x e. ( K ( R UP S ) X ) -> X e. ( C Func E ) )
11 10 adantl
 |-  ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> X e. ( C Func E ) )
12 3 eqcomi
 |-  ( <. D , E >. -o.F F ) = K
13 12 a1i
 |-  ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( <. D , E >. -o.F F ) = K )
14 1 2 7 11 13 lanval
 |-  ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) )
15 6 14 eleqtrrd
 |-  ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( F ( <. C , D >. Lan E ) X ) )
16 5 15 impbida
 |-  ( F e. ( C Func D ) -> ( x e. ( F ( <. C , D >. Lan E ) X ) <-> x e. ( K ( R UP S ) X ) ) )
17 16 eqrdv
 |-  ( F e. ( C Func D ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) )