| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islan.r |
|- R = ( D FuncCat E ) |
| 2 |
|
islan.s |
|- S = ( C FuncCat E ) |
| 3 |
|
islan.k |
|- K = ( <. D , E >. -o.F F ) |
| 4 |
1 2 3
|
islan |
|- ( x e. ( F ( <. C , D >. Lan E ) X ) -> x e. ( K ( R UP S ) X ) ) |
| 5 |
4
|
adantl |
|- ( ( F e. ( C Func D ) /\ x e. ( F ( <. C , D >. Lan E ) X ) ) -> x e. ( K ( R UP S ) X ) ) |
| 6 |
|
simpr |
|- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( K ( R UP S ) X ) ) |
| 7 |
|
simpl |
|- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> F e. ( C Func D ) ) |
| 8 |
2
|
fucbas |
|- ( C Func E ) = ( Base ` S ) |
| 9 |
8
|
uprcl |
|- ( x e. ( K ( R UP S ) X ) -> ( K e. ( R Func S ) /\ X e. ( C Func E ) ) ) |
| 10 |
9
|
simprd |
|- ( x e. ( K ( R UP S ) X ) -> X e. ( C Func E ) ) |
| 11 |
10
|
adantl |
|- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> X e. ( C Func E ) ) |
| 12 |
3
|
eqcomi |
|- ( <. D , E >. -o.F F ) = K |
| 13 |
12
|
a1i |
|- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( <. D , E >. -o.F F ) = K ) |
| 14 |
1 2 7 11 13
|
lanval |
|- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) |
| 15 |
6 14
|
eleqtrrd |
|- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( F ( <. C , D >. Lan E ) X ) ) |
| 16 |
5 15
|
impbida |
|- ( F e. ( C Func D ) -> ( x e. ( F ( <. C , D >. Lan E ) X ) <-> x e. ( K ( R UP S ) X ) ) ) |
| 17 |
16
|
eqrdv |
|- ( F e. ( C Func D ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) |