| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isran.o |
|- O = ( oppCat ` ( D FuncCat E ) ) |
| 2 |
|
isran.p |
|- P = ( oppCat ` ( C FuncCat E ) ) |
| 3 |
|
isran.k |
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 4 |
|
isran.l |
|- ( ph -> L e. ( F ( <. C , D >. Ran E ) X ) ) |
| 5 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 6 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 7 |
|
ranrcl |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) |
| 9 |
8
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
| 10 |
8
|
simprd |
|- ( ph -> X e. ( C Func E ) ) |
| 11 |
5 6 9 10 3 1 2
|
ranval |
|- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) |
| 12 |
4 11
|
eleqtrd |
|- ( ph -> L e. ( <. J , tpos K >. ( O UP P ) X ) ) |