Metamath Proof Explorer


Theorem isran

Description: A right Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o
|- O = ( oppCat ` ( D FuncCat E ) )
isran.p
|- P = ( oppCat ` ( C FuncCat E ) )
isran.k
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. )
isran.l
|- ( ph -> L e. ( F ( <. C , D >. Ran E ) X ) )
Assertion isran
|- ( ph -> L e. ( <. J , tpos K >. ( O UP P ) X ) )

Proof

Step Hyp Ref Expression
1 isran.o
 |-  O = ( oppCat ` ( D FuncCat E ) )
2 isran.p
 |-  P = ( oppCat ` ( C FuncCat E ) )
3 isran.k
 |-  ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. )
4 isran.l
 |-  ( ph -> L e. ( F ( <. C , D >. Ran E ) X ) )
5 eqid
 |-  ( D FuncCat E ) = ( D FuncCat E )
6 eqid
 |-  ( C FuncCat E ) = ( C FuncCat E )
7 ranrcl
 |-  ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) )
8 4 7 syl
 |-  ( ph -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) )
9 8 simpld
 |-  ( ph -> F e. ( C Func D ) )
10 8 simprd
 |-  ( ph -> X e. ( C Func E ) )
11 5 6 9 10 3 1 2 ranval
 |-  ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) )
12 4 11 eleqtrd
 |-  ( ph -> L e. ( <. J , tpos K >. ( O UP P ) X ) )