| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isran.o |
|- O = ( oppCat ` ( D FuncCat E ) ) |
| 2 |
|
isran.p |
|- P = ( oppCat ` ( C FuncCat E ) ) |
| 3 |
|
isran.k |
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 4 |
|
isran2.l |
|- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) |
| 5 |
|
df-br |
|- ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) |
| 6 |
4 5
|
sylib |
|- ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) |
| 7 |
1 2 3 6
|
isran |
|- ( ph -> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) ) |
| 8 |
|
df-br |
|- ( L ( <. J , tpos K >. ( O UP P ) X ) A <-> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) ) |
| 9 |
7 8
|
sylibr |
|- ( ph -> L ( <. J , tpos K >. ( O UP P ) X ) A ) |