Metamath Proof Explorer


Theorem isran2

Description: A right Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o
|- O = ( oppCat ` ( D FuncCat E ) )
isran.p
|- P = ( oppCat ` ( C FuncCat E ) )
isran.k
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. )
isran2.l
|- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A )
Assertion isran2
|- ( ph -> L ( <. J , tpos K >. ( O UP P ) X ) A )

Proof

Step Hyp Ref Expression
1 isran.o
 |-  O = ( oppCat ` ( D FuncCat E ) )
2 isran.p
 |-  P = ( oppCat ` ( C FuncCat E ) )
3 isran.k
 |-  ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. )
4 isran2.l
 |-  ( ph -> L ( F ( <. C , D >. Ran E ) X ) A )
5 df-br
 |-  ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) )
6 4 5 sylib
 |-  ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) )
7 1 2 3 6 isran
 |-  ( ph -> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) )
8 df-br
 |-  ( L ( <. J , tpos K >. ( O UP P ) X ) A <-> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) )
9 7 8 sylibr
 |-  ( ph -> L ( <. J , tpos K >. ( O UP P ) X ) A )