Metamath Proof Explorer


Theorem isran2

Description: A right Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o O = oppCat D FuncCat E
isran.p P = oppCat C FuncCat E
isran.k No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
isran2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
Assertion isran2 Could not format assertion : No typesetting found for |- ( ph -> L ( <. J , tpos K >. ( O UP P ) X ) A ) with typecode |-

Proof

Step Hyp Ref Expression
1 isran.o O = oppCat D FuncCat E
2 isran.p P = oppCat C FuncCat E
3 isran.k Could not format ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
4 isran2.l Could not format ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Ran E ) X ) A ) with typecode |-
5 df-br Could not format ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( L ( F ( <. C , D >. Ran E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
6 4 5 sylib Could not format ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( ph -> <. L , A >. e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
7 1 2 3 6 isran Could not format ( ph -> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ph -> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-
8 df-br Could not format ( L ( <. J , tpos K >. ( O UP P ) X ) A <-> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( L ( <. J , tpos K >. ( O UP P ) X ) A <-> <. L , A >. e. ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-
9 7 8 sylibr Could not format ( ph -> L ( <. J , tpos K >. ( O UP P ) X ) A ) : No typesetting found for |- ( ph -> L ( <. J , tpos K >. ( O UP P ) X ) A ) with typecode |-