Metamath Proof Explorer


Theorem isran

Description: A right Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o O = oppCat D FuncCat E
isran.p P = oppCat C FuncCat E
isran.k No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
isran.l No typesetting found for |- ( ph -> L e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
Assertion isran Could not format assertion : No typesetting found for |- ( ph -> L e. ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 isran.o O = oppCat D FuncCat E
2 isran.p P = oppCat C FuncCat E
3 isran.k Could not format ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) with typecode |-
4 isran.l Could not format ( ph -> L e. ( F ( <. C , D >. Ran E ) X ) ) : No typesetting found for |- ( ph -> L e. ( F ( <. C , D >. Ran E ) X ) ) with typecode |-
5 eqid D FuncCat E = D FuncCat E
6 eqid C FuncCat E = C FuncCat E
7 ranrcl Could not format ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) : No typesetting found for |- ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) with typecode |-
8 4 7 syl φ F C Func D X C Func E
9 8 simpld φ F C Func D
10 8 simprd φ X C Func E
11 5 6 9 10 3 1 2 ranval Could not format ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-
12 4 11 eleqtrd Could not format ( ph -> L e. ( <. J , tpos K >. ( O UP P ) X ) ) : No typesetting found for |- ( ph -> L e. ( <. J , tpos K >. ( O UP P ) X ) ) with typecode |-