| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isran.o |
⊢ 𝑂 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 2 |
|
isran.p |
⊢ 𝑃 = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 3 |
|
isran.k |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = 〈 𝐽 , 𝐾 〉 ) |
| 4 |
|
isran.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) ) |
| 5 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 6 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 7 |
|
ranrcl |
⊢ ( 𝐿 ∈ ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) ) |
| 9 |
8
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 10 |
8
|
simprd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) |
| 11 |
5 6 9 10 3 1 2
|
ranval |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Ran 𝐸 ) 𝑋 ) = ( 〈 𝐽 , tpos 𝐾 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) |
| 12 |
4 11
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 〈 𝐽 , tpos 𝐾 〉 ( 𝑂 UP 𝑃 ) 𝑋 ) ) |