Metamath Proof Explorer


Theorem isran

Description: A right Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o 𝑂 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) )
isran.p 𝑃 = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) )
isran.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
isran.l ( 𝜑𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) )
Assertion isran ( 𝜑𝐿 ∈ ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )

Proof

Step Hyp Ref Expression
1 isran.o 𝑂 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) )
2 isran.p 𝑃 = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) )
3 isran.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
4 isran.l ( 𝜑𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) )
5 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
6 eqid ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 )
7 ranrcl ( 𝐿 ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) )
8 4 7 syl ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐸 ) ) )
9 8 simpld ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
10 8 simprd ( 𝜑𝑋 ∈ ( 𝐶 Func 𝐸 ) )
11 5 6 9 10 3 1 2 ranval ( 𝜑 → ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) = ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )
12 4 11 eleqtrd ( 𝜑𝐿 ∈ ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )