Metamath Proof Explorer


Theorem isran2

Description: A right Kan extension is a universal pair. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o 𝑂 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) )
isran.p 𝑃 = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) )
isran.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
isran2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
Assertion isran2 ( 𝜑𝐿 ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) 𝐴 )

Proof

Step Hyp Ref Expression
1 isran.o 𝑂 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) )
2 isran.p 𝑃 = ( oppCat ‘ ( 𝐶 FuncCat 𝐸 ) )
3 isran.k ( 𝜑 → ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ⟨ 𝐽 , 𝐾 ⟩ )
4 isran2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 )
5 df-br ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) )
6 4 5 sylib ( 𝜑 → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Ran 𝐸 ) 𝑋 ) )
7 1 2 3 6 isran ( 𝜑 → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )
8 df-br ( 𝐿 ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) )
9 7 8 sylibr ( 𝜑𝐿 ( ⟨ 𝐽 , tpos 𝐾 ⟩ ( 𝑂 UP 𝑃 ) 𝑋 ) 𝐴 )