Metamath Proof Explorer


Theorem ranval2

Description: The set of right Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by oppcup2 and oppcup3lem . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses isran.o
|- O = ( oppCat ` ( D FuncCat E ) )
isran.p
|- P = ( oppCat ` ( C FuncCat E ) )
isran.k
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. )
ranval2.f
|- ( ph -> F e. ( C Func D ) )
Assertion ranval2
|- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) )

Proof

Step Hyp Ref Expression
1 isran.o
 |-  O = ( oppCat ` ( D FuncCat E ) )
2 isran.p
 |-  P = ( oppCat ` ( C FuncCat E ) )
3 isran.k
 |-  ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. )
4 ranval2.f
 |-  ( ph -> F e. ( C Func D ) )
5 3 adantr
 |-  ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. )
6 simpr
 |-  ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) )
7 1 2 5 6 isran
 |-  ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) )
8 simpr
 |-  ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) )
9 eqid
 |-  ( D FuncCat E ) = ( D FuncCat E )
10 eqid
 |-  ( C FuncCat E ) = ( C FuncCat E )
11 4 adantr
 |-  ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> F e. ( C Func D ) )
12 10 fucbas
 |-  ( C Func E ) = ( Base ` ( C FuncCat E ) )
13 2 12 oppcbas
 |-  ( C Func E ) = ( Base ` P )
14 13 uprcl
 |-  ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> ( <. J , tpos K >. e. ( O Func P ) /\ X e. ( C Func E ) ) )
15 14 simprd
 |-  ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> X e. ( C Func E ) )
16 15 adantl
 |-  ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> X e. ( C Func E ) )
17 3 adantr
 |-  ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. )
18 9 10 11 16 17 1 2 ranval
 |-  ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) )
19 8 18 eleqtrrd
 |-  ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) )
20 7 19 impbida
 |-  ( ph -> ( x e. ( F ( <. C , D >. Ran E ) X ) <-> x e. ( <. J , tpos K >. ( O UP P ) X ) ) )
21 20 eqrdv
 |-  ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) )