| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isran.o |
|- O = ( oppCat ` ( D FuncCat E ) ) |
| 2 |
|
isran.p |
|- P = ( oppCat ` ( C FuncCat E ) ) |
| 3 |
|
isran.k |
|- ( ph -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 4 |
|
ranval2.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
3
|
adantr |
|- ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 6 |
|
simpr |
|- ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) ) |
| 7 |
1 2 5 6
|
isran |
|- ( ( ph /\ x e. ( F ( <. C , D >. Ran E ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( <. J , tpos K >. ( O UP P ) X ) ) |
| 9 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 10 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> F e. ( C Func D ) ) |
| 12 |
10
|
fucbas |
|- ( C Func E ) = ( Base ` ( C FuncCat E ) ) |
| 13 |
2 12
|
oppcbas |
|- ( C Func E ) = ( Base ` P ) |
| 14 |
13
|
uprcl |
|- ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> ( <. J , tpos K >. e. ( O Func P ) /\ X e. ( C Func E ) ) ) |
| 15 |
14
|
simprd |
|- ( x e. ( <. J , tpos K >. ( O UP P ) X ) -> X e. ( C Func E ) ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> X e. ( C Func E ) ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( <. D , E >. -o.F F ) = <. J , K >. ) |
| 18 |
9 10 11 16 17 1 2
|
ranval |
|- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) |
| 19 |
8 18
|
eleqtrrd |
|- ( ( ph /\ x e. ( <. J , tpos K >. ( O UP P ) X ) ) -> x e. ( F ( <. C , D >. Ran E ) X ) ) |
| 20 |
7 19
|
impbida |
|- ( ph -> ( x e. ( F ( <. C , D >. Ran E ) X ) <-> x e. ( <. J , tpos K >. ( O UP P ) X ) ) ) |
| 21 |
20
|
eqrdv |
|- ( ph -> ( F ( <. C , D >. Ran E ) X ) = ( <. J , tpos K >. ( O UP P ) X ) ) |