| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> L e. ( F ( <. C , D >. Ran E ) X ) ) |
| 2 |
|
ne0i |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F ( <. C , D >. Ran E ) X ) =/= (/) ) |
| 3 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 4 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 5 |
|
df-ov |
|- ( <. C , D >. Ran E ) = ( Ran ` <. <. C , D >. , E >. ) |
| 6 |
5
|
eqeq1i |
|- ( ( <. C , D >. Ran E ) = (/) <-> ( Ran ` <. <. C , D >. , E >. ) = (/) ) |
| 7 |
|
oveq |
|- ( ( <. C , D >. Ran E ) = (/) -> ( F ( <. C , D >. Ran E ) X ) = ( F (/) X ) ) |
| 8 |
|
0ov |
|- ( F (/) X ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( ( <. C , D >. Ran E ) = (/) -> ( F ( <. C , D >. Ran E ) X ) = (/) ) |
| 10 |
6 9
|
sylbir |
|- ( ( Ran ` <. <. C , D >. , E >. ) = (/) -> ( F ( <. C , D >. Ran E ) X ) = (/) ) |
| 11 |
10
|
necon3i |
|- ( ( F ( <. C , D >. Ran E ) X ) =/= (/) -> ( Ran ` <. <. C , D >. , E >. ) =/= (/) ) |
| 12 |
|
fvfundmfvn0 |
|- ( ( Ran ` <. <. C , D >. , E >. ) =/= (/) -> ( <. <. C , D >. , E >. e. dom Ran /\ Fun ( Ran |` { <. <. C , D >. , E >. } ) ) ) |
| 13 |
12
|
simpld |
|- ( ( Ran ` <. <. C , D >. , E >. ) =/= (/) -> <. <. C , D >. , E >. e. dom Ran ) |
| 14 |
|
ranfn |
|- Ran Fn ( ( _V X. _V ) X. _V ) |
| 15 |
14
|
fndmi |
|- dom Ran = ( ( _V X. _V ) X. _V ) |
| 16 |
13 15
|
eleqtrdi |
|- ( ( Ran ` <. <. C , D >. , E >. ) =/= (/) -> <. <. C , D >. , E >. e. ( ( _V X. _V ) X. _V ) ) |
| 17 |
|
opelxp1 |
|- ( <. <. C , D >. , E >. e. ( ( _V X. _V ) X. _V ) -> <. C , D >. e. ( _V X. _V ) ) |
| 18 |
|
opelxp1 |
|- ( <. C , D >. e. ( _V X. _V ) -> C e. _V ) |
| 19 |
11 16 17 18
|
4syl |
|- ( ( F ( <. C , D >. Ran E ) X ) =/= (/) -> C e. _V ) |
| 20 |
|
opelxp2 |
|- ( <. C , D >. e. ( _V X. _V ) -> D e. _V ) |
| 21 |
11 16 17 20
|
4syl |
|- ( ( F ( <. C , D >. Ran E ) X ) =/= (/) -> D e. _V ) |
| 22 |
|
opelxp2 |
|- ( <. <. C , D >. , E >. e. ( ( _V X. _V ) X. _V ) -> E e. _V ) |
| 23 |
11 16 22
|
3syl |
|- ( ( F ( <. C , D >. Ran E ) X ) =/= (/) -> E e. _V ) |
| 24 |
|
eqid |
|- ( oppCat ` ( D FuncCat E ) ) = ( oppCat ` ( D FuncCat E ) ) |
| 25 |
|
eqid |
|- ( oppCat ` ( C FuncCat E ) ) = ( oppCat ` ( C FuncCat E ) ) |
| 26 |
3 4 19 21 23 24 25
|
ranfval |
|- ( ( F ( <. C , D >. Ran E ) X ) =/= (/) -> ( <. C , D >. Ran E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) ) |
| 27 |
2 26
|
syl |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( <. C , D >. Ran E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) ) |
| 28 |
27
|
oveqd |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F ( <. C , D >. Ran E ) X ) = ( F ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) X ) ) |
| 29 |
1 28
|
eleqtrd |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> L e. ( F ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) X ) ) |
| 30 |
|
eqid |
|- ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) |
| 31 |
30
|
elmpocl |
|- ( L e. ( F ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( oppFunc ` ( <. D , E >. -o.F f ) ) ( ( oppCat ` ( D FuncCat E ) ) UP ( oppCat ` ( C FuncCat E ) ) ) x ) ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) |
| 32 |
29 31
|
syl |
|- ( L e. ( F ( <. C , D >. Ran E ) X ) -> ( F e. ( C Func D ) /\ X e. ( C Func E ) ) ) |