| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rel0 |
|- Rel (/) |
| 2 |
|
releq |
|- ( ( F ( P Lan E ) X ) = (/) -> ( Rel ( F ( P Lan E ) X ) <-> Rel (/) ) ) |
| 3 |
1 2
|
mpbiri |
|- ( ( F ( P Lan E ) X ) = (/) -> Rel ( F ( P Lan E ) X ) ) |
| 4 |
|
n0 |
|- ( ( F ( P Lan E ) X ) =/= (/) <-> E. x x e. ( F ( P Lan E ) X ) ) |
| 5 |
|
relup |
|- Rel ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) |
| 6 |
|
ne0i |
|- ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) =/= (/) ) |
| 7 |
|
oveq |
|- ( ( P Lan E ) = (/) -> ( F ( P Lan E ) X ) = ( F (/) X ) ) |
| 8 |
|
0ov |
|- ( F (/) X ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( ( P Lan E ) = (/) -> ( F ( P Lan E ) X ) = (/) ) |
| 10 |
9
|
necon3i |
|- ( ( F ( P Lan E ) X ) =/= (/) -> ( P Lan E ) =/= (/) ) |
| 11 |
|
n0 |
|- ( ( P Lan E ) =/= (/) <-> E. x x e. ( P Lan E ) ) |
| 12 |
|
df-lan |
|- Lan = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( <. d , e >. -o.F f ) ( ( d FuncCat e ) UP ( c FuncCat e ) ) x ) ) ) |
| 13 |
12
|
elmpocl1 |
|- ( x e. ( P Lan E ) -> P e. ( _V X. _V ) ) |
| 14 |
|
1st2nd2 |
|- ( P e. ( _V X. _V ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 15 |
13 14
|
syl |
|- ( x e. ( P Lan E ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 16 |
15
|
exlimiv |
|- ( E. x x e. ( P Lan E ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 17 |
11 16
|
sylbi |
|- ( ( P Lan E ) =/= (/) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 18 |
6 10 17
|
3syl |
|- ( x e. ( F ( P Lan E ) X ) -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 19 |
18
|
oveq1d |
|- ( x e. ( F ( P Lan E ) X ) -> ( P Lan E ) = ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) ) |
| 20 |
19
|
oveqd |
|- ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) = ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) ) |
| 21 |
|
eqid |
|- ( ( 2nd ` P ) FuncCat E ) = ( ( 2nd ` P ) FuncCat E ) |
| 22 |
|
eqid |
|- ( ( 1st ` P ) FuncCat E ) = ( ( 1st ` P ) FuncCat E ) |
| 23 |
|
id |
|- ( x e. ( F ( P Lan E ) X ) -> x e. ( F ( P Lan E ) X ) ) |
| 24 |
23 20
|
eleqtrd |
|- ( x e. ( F ( P Lan E ) X ) -> x e. ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) ) |
| 25 |
|
lanrcl |
|- ( x e. ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) -> ( F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) /\ X e. ( ( 1st ` P ) Func E ) ) ) |
| 26 |
24 25
|
syl |
|- ( x e. ( F ( P Lan E ) X ) -> ( F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) /\ X e. ( ( 1st ` P ) Func E ) ) ) |
| 27 |
26
|
simpld |
|- ( x e. ( F ( P Lan E ) X ) -> F e. ( ( 1st ` P ) Func ( 2nd ` P ) ) ) |
| 28 |
26
|
simprd |
|- ( x e. ( F ( P Lan E ) X ) -> X e. ( ( 1st ` P ) Func E ) ) |
| 29 |
|
eqidd |
|- ( x e. ( F ( P Lan E ) X ) -> ( <. ( 2nd ` P ) , E >. -o.F F ) = ( <. ( 2nd ` P ) , E >. -o.F F ) ) |
| 30 |
21 22 27 28 29
|
lanval |
|- ( x e. ( F ( P Lan E ) X ) -> ( F ( <. ( 1st ` P ) , ( 2nd ` P ) >. Lan E ) X ) = ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) |
| 31 |
20 30
|
eqtrd |
|- ( x e. ( F ( P Lan E ) X ) -> ( F ( P Lan E ) X ) = ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) |
| 32 |
31
|
releqd |
|- ( x e. ( F ( P Lan E ) X ) -> ( Rel ( F ( P Lan E ) X ) <-> Rel ( ( <. ( 2nd ` P ) , E >. -o.F F ) ( ( ( 2nd ` P ) FuncCat E ) UP ( ( 1st ` P ) FuncCat E ) ) X ) ) ) |
| 33 |
5 32
|
mpbiri |
|- ( x e. ( F ( P Lan E ) X ) -> Rel ( F ( P Lan E ) X ) ) |
| 34 |
33
|
exlimiv |
|- ( E. x x e. ( F ( P Lan E ) X ) -> Rel ( F ( P Lan E ) X ) ) |
| 35 |
4 34
|
sylbi |
|- ( ( F ( P Lan E ) X ) =/= (/) -> Rel ( F ( P Lan E ) X ) ) |
| 36 |
3 35
|
pm2.61ine |
|- Rel ( F ( P Lan E ) X ) |