| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rel0 |
⊢ Rel ∅ |
| 2 |
|
releq |
⊢ ( ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) = ∅ → ( Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ↔ Rel ∅ ) ) |
| 3 |
1 2
|
mpbiri |
⊢ ( ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) = ∅ → Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ) |
| 4 |
|
n0 |
⊢ ( ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ) |
| 5 |
|
relup |
⊢ Rel ( ( 〈 ( 2nd ‘ 𝑃 ) , 𝐸 〉 −∘F 𝐹 ) ( ( ( 2nd ‘ 𝑃 ) FuncCat 𝐸 ) UP ( ( 1st ‘ 𝑃 ) FuncCat 𝐸 ) ) 𝑋 ) |
| 6 |
|
ne0i |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ≠ ∅ ) |
| 7 |
|
oveq |
⊢ ( ( 𝑃 Lan 𝐸 ) = ∅ → ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) = ( 𝐹 ∅ 𝑋 ) ) |
| 8 |
|
0ov |
⊢ ( 𝐹 ∅ 𝑋 ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( ( 𝑃 Lan 𝐸 ) = ∅ → ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) = ∅ ) |
| 10 |
9
|
necon3i |
⊢ ( ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ≠ ∅ → ( 𝑃 Lan 𝐸 ) ≠ ∅ ) |
| 11 |
|
n0 |
⊢ ( ( 𝑃 Lan 𝐸 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑃 Lan 𝐸 ) ) |
| 12 |
|
df-lan |
⊢ Lan = ( 𝑝 ∈ ( V × V ) , 𝑒 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ) |
| 13 |
12
|
elmpocl1 |
⊢ ( 𝑥 ∈ ( 𝑃 Lan 𝐸 ) → 𝑃 ∈ ( V × V ) ) |
| 14 |
|
1st2nd2 |
⊢ ( 𝑃 ∈ ( V × V ) → 𝑃 = 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝑥 ∈ ( 𝑃 Lan 𝐸 ) → 𝑃 = 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝑃 Lan 𝐸 ) → 𝑃 = 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ) |
| 17 |
11 16
|
sylbi |
⊢ ( ( 𝑃 Lan 𝐸 ) ≠ ∅ → 𝑃 = 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ) |
| 18 |
6 10 17
|
3syl |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → 𝑃 = 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 𝑃 Lan 𝐸 ) = ( 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 Lan 𝐸 ) ) |
| 20 |
19
|
oveqd |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) = ( 𝐹 ( 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 Lan 𝐸 ) 𝑋 ) ) |
| 21 |
|
eqid |
⊢ ( ( 2nd ‘ 𝑃 ) FuncCat 𝐸 ) = ( ( 2nd ‘ 𝑃 ) FuncCat 𝐸 ) |
| 22 |
|
eqid |
⊢ ( ( 1st ‘ 𝑃 ) FuncCat 𝐸 ) = ( ( 1st ‘ 𝑃 ) FuncCat 𝐸 ) |
| 23 |
|
id |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ) |
| 24 |
23 20
|
eleqtrd |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → 𝑥 ∈ ( 𝐹 ( 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 Lan 𝐸 ) 𝑋 ) ) |
| 25 |
|
lanrcl |
⊢ ( 𝑥 ∈ ( 𝐹 ( 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 Lan 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( ( 1st ‘ 𝑃 ) Func ( 2nd ‘ 𝑃 ) ) ∧ 𝑋 ∈ ( ( 1st ‘ 𝑃 ) Func 𝐸 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 𝐹 ∈ ( ( 1st ‘ 𝑃 ) Func ( 2nd ‘ 𝑃 ) ) ∧ 𝑋 ∈ ( ( 1st ‘ 𝑃 ) Func 𝐸 ) ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → 𝐹 ∈ ( ( 1st ‘ 𝑃 ) Func ( 2nd ‘ 𝑃 ) ) ) |
| 28 |
26
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → 𝑋 ∈ ( ( 1st ‘ 𝑃 ) Func 𝐸 ) ) |
| 29 |
|
eqidd |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 〈 ( 2nd ‘ 𝑃 ) , 𝐸 〉 −∘F 𝐹 ) = ( 〈 ( 2nd ‘ 𝑃 ) , 𝐸 〉 −∘F 𝐹 ) ) |
| 30 |
21 22 27 28 29
|
lanval |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 𝐹 ( 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 Lan 𝐸 ) 𝑋 ) = ( ( 〈 ( 2nd ‘ 𝑃 ) , 𝐸 〉 −∘F 𝐹 ) ( ( ( 2nd ‘ 𝑃 ) FuncCat 𝐸 ) UP ( ( 1st ‘ 𝑃 ) FuncCat 𝐸 ) ) 𝑋 ) ) |
| 31 |
20 30
|
eqtrd |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) = ( ( 〈 ( 2nd ‘ 𝑃 ) , 𝐸 〉 −∘F 𝐹 ) ( ( ( 2nd ‘ 𝑃 ) FuncCat 𝐸 ) UP ( ( 1st ‘ 𝑃 ) FuncCat 𝐸 ) ) 𝑋 ) ) |
| 32 |
31
|
releqd |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → ( Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ↔ Rel ( ( 〈 ( 2nd ‘ 𝑃 ) , 𝐸 〉 −∘F 𝐹 ) ( ( ( 2nd ‘ 𝑃 ) FuncCat 𝐸 ) UP ( ( 1st ‘ 𝑃 ) FuncCat 𝐸 ) ) 𝑋 ) ) ) |
| 33 |
5 32
|
mpbiri |
⊢ ( 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ) |
| 34 |
33
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) → Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ) |
| 35 |
4 34
|
sylbi |
⊢ ( ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ≠ ∅ → Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) ) |
| 36 |
3 35
|
pm2.61ine |
⊢ Rel ( 𝐹 ( 𝑃 Lan 𝐸 ) 𝑋 ) |