| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ran |
|- Ran = ( p e. ( _V X. _V ) , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) ) |
| 2 |
|
ovex |
|- ( c Func d ) e. _V |
| 3 |
|
ovex |
|- ( c Func e ) e. _V |
| 4 |
2 3
|
mpoex |
|- ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) e. _V |
| 5 |
4
|
csbex |
|- [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) e. _V |
| 6 |
5
|
csbex |
|- [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ ( f e. ( c Func d ) , x e. ( c Func e ) |-> ( ( oppFunc ` ( <. d , e >. -o.F f ) ) ( ( oppCat ` ( d FuncCat e ) ) UP ( oppCat ` ( c FuncCat e ) ) ) x ) ) e. _V |
| 7 |
1 6
|
fnmpoi |
|- Ran Fn ( ( _V X. _V ) X. _V ) |