Metamath Proof Explorer


Theorem ranfn

Description: Ran is a function on ( (V X. V ) X. _V ) . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Assertion ranfn Ran Fn ( ( V × V ) × V )

Proof

Step Hyp Ref Expression
1 df-ran Ran = ( 𝑝 ∈ ( V × V ) , 𝑒 ∈ V ↦ ( 1st𝑝 ) / 𝑐 ( 2nd𝑝 ) / 𝑑 ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( oppFunc ‘ ( ⟨ 𝑑 , 𝑒 ⟩ −∘F 𝑓 ) ) ( ( oppCat ‘ ( 𝑑 FuncCat 𝑒 ) ) UP ( oppCat ‘ ( 𝑐 FuncCat 𝑒 ) ) ) 𝑥 ) ) )
2 ovex ( 𝑐 Func 𝑑 ) ∈ V
3 ovex ( 𝑐 Func 𝑒 ) ∈ V
4 2 3 mpoex ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( oppFunc ‘ ( ⟨ 𝑑 , 𝑒 ⟩ −∘F 𝑓 ) ) ( ( oppCat ‘ ( 𝑑 FuncCat 𝑒 ) ) UP ( oppCat ‘ ( 𝑐 FuncCat 𝑒 ) ) ) 𝑥 ) ) ∈ V
5 4 csbex ( 2nd𝑝 ) / 𝑑 ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( oppFunc ‘ ( ⟨ 𝑑 , 𝑒 ⟩ −∘F 𝑓 ) ) ( ( oppCat ‘ ( 𝑑 FuncCat 𝑒 ) ) UP ( oppCat ‘ ( 𝑐 FuncCat 𝑒 ) ) ) 𝑥 ) ) ∈ V
6 5 csbex ( 1st𝑝 ) / 𝑐 ( 2nd𝑝 ) / 𝑑 ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( oppFunc ‘ ( ⟨ 𝑑 , 𝑒 ⟩ −∘F 𝑓 ) ) ( ( oppCat ‘ ( 𝑑 FuncCat 𝑒 ) ) UP ( oppCat ‘ ( 𝑐 FuncCat 𝑒 ) ) ) 𝑥 ) ) ∈ V
7 1 6 fnmpoi Ran Fn ( ( V × V ) × V )