Metamath Proof Explorer


Theorem prcofdiag

Description: A diagonal functor post-composed by a pre-composition functor is another diagonal functor. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Hypotheses prcofdiag.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
prcofdiag.m 𝑀 = ( 𝐶 Δfunc 𝐸 )
prcofdiag.f ( 𝜑𝐹 ∈ ( 𝐸 Func 𝐷 ) )
prcofdiag.c ( 𝜑𝐶 ∈ Cat )
prcofdiag.g ( 𝜑 → ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) = 𝐺 )
Assertion prcofdiag ( 𝜑 → ( 𝐺func 𝐿 ) = 𝑀 )

Proof

Step Hyp Ref Expression
1 prcofdiag.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 prcofdiag.m 𝑀 = ( 𝐶 Δfunc 𝐸 )
3 prcofdiag.f ( 𝜑𝐹 ∈ ( 𝐸 Func 𝐷 ) )
4 prcofdiag.c ( 𝜑𝐶 ∈ Cat )
5 prcofdiag.g ( 𝜑 → ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) = 𝐺 )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 eqid ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) = ( Base ‘ ( 𝐸 FuncCat 𝐶 ) )
8 3 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐸 Func 𝐷 ) ( 2nd𝐹 ) )
9 8 funcrcl3 ( 𝜑𝐷 ∈ Cat )
10 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
11 1 4 9 10 diagcl ( 𝜑𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
12 eqid ( 𝐸 FuncCat 𝐶 ) = ( 𝐸 FuncCat 𝐶 )
13 10 4 12 3 prcoffunca ( 𝜑 → ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) )
14 5 13 eqeltrrd ( 𝜑𝐺 ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) )
15 11 14 cofucl ( 𝜑 → ( 𝐺func 𝐿 ) ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) )
16 15 func1st2nd ( 𝜑 → ( 1st ‘ ( 𝐺func 𝐿 ) ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd ‘ ( 𝐺func 𝐿 ) ) )
17 6 7 16 funcf1 ( 𝜑 → ( 1st ‘ ( 𝐺func 𝐿 ) ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) )
18 17 ffnd ( 𝜑 → ( 1st ‘ ( 𝐺func 𝐿 ) ) Fn ( Base ‘ 𝐶 ) )
19 8 funcrcl2 ( 𝜑𝐸 ∈ Cat )
20 2 4 19 12 diagcl ( 𝜑𝑀 ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) )
21 20 func1st2nd ( 𝜑 → ( 1st𝑀 ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd𝑀 ) )
22 6 7 21 funcf1 ( 𝜑 → ( 1st𝑀 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) )
23 22 ffnd ( 𝜑 → ( 1st𝑀 ) Fn ( Base ‘ 𝐶 ) )
24 11 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
25 14 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐺 ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) )
26 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
27 6 24 25 26 cofu1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝐺func 𝐿 ) ) ‘ 𝑥 ) = ( ( 1st𝐺 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) )
28 4 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
29 9 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat )
30 eqid ( ( 1st𝐿 ) ‘ 𝑥 ) = ( ( 1st𝐿 ) ‘ 𝑥 )
31 1 28 29 6 26 30 diag1cl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐿 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐶 ) )
32 5 fveq2d ( 𝜑 → ( 1st ‘ ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) ) = ( 1st𝐺 ) )
33 32 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) ) = ( 1st𝐺 ) )
34 31 33 prcof1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st𝐺 ) ‘ ( ( 1st𝐿 ) ‘ 𝑥 ) ) = ( ( ( 1st𝐿 ) ‘ 𝑥 ) ∘func 𝐹 ) )
35 3 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( 𝐸 Func 𝐷 ) )
36 1 2 35 28 6 26 prcofdiag1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st𝐿 ) ‘ 𝑥 ) ∘func 𝐹 ) = ( ( 1st𝑀 ) ‘ 𝑥 ) )
37 27 34 36 3eqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝐺func 𝐿 ) ) ‘ 𝑥 ) = ( ( 1st𝑀 ) ‘ 𝑥 ) )
38 18 23 37 eqfnfvd ( 𝜑 → ( 1st ‘ ( 𝐺func 𝐿 ) ) = ( 1st𝑀 ) )
39 6 16 funcfn2 ( 𝜑 → ( 2nd ‘ ( 𝐺func 𝐿 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
40 6 21 funcfn2 ( 𝜑 → ( 2nd𝑀 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
41 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
42 eqid ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) = ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) )
43 16 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( 𝐺func 𝐿 ) ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd ‘ ( 𝐺func 𝐿 ) ) )
44 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
45 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
46 6 41 42 43 44 45 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐿 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 𝐺func 𝐿 ) ) ‘ 𝑥 ) ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) ( ( 1st ‘ ( 𝐺func 𝐿 ) ) ‘ 𝑦 ) ) )
47 46 ffnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐿 ) ) 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
48 21 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑀 ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd𝑀 ) )
49 6 41 42 48 44 45 funcf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st𝑀 ) ‘ 𝑥 ) ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) ( ( 1st𝑀 ) ‘ 𝑦 ) ) )
50 49 ffnd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd𝑀 ) 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
51 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
52 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
53 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐹 ∈ ( 𝐸 Func 𝐷 ) )
54 53 func1st2nd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 1st𝐹 ) ( 𝐸 Func 𝐷 ) ( 2nd𝐹 ) )
55 51 52 54 funcf1 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 1st𝐹 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐷 ) )
56 xpco2 ( ( 1st𝐹 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐷 ) → ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st𝐹 ) ) = ( ( Base ‘ 𝐸 ) × { 𝑓 } ) )
57 55 56 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st𝐹 ) ) = ( ( Base ‘ 𝐸 ) × { 𝑓 } ) )
58 11 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
59 14 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐺 ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) )
60 44 adantr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
61 45 adantr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
62 simpr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
63 6 58 59 60 61 41 62 cofu2 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd𝐿 ) 𝑦 ) ‘ 𝑓 ) ) )
64 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐶 ∈ Cat )
65 9 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐷 ∈ Cat )
66 1 6 52 41 64 65 60 61 62 diag2 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd𝐿 ) 𝑦 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐷 ) × { 𝑓 } ) )
67 66 fveq2d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd𝐿 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐿 ) ‘ 𝑦 ) ) ‘ ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) )
68 eqid ( 𝐷 Nat 𝐶 ) = ( 𝐷 Nat 𝐶 )
69 1 6 52 41 64 65 60 61 62 68 diag2cl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∈ ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐶 ) ( ( 1st𝐿 ) ‘ 𝑦 ) ) )
70 5 fveq2d ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) ) = ( 2nd𝐺 ) )
71 70 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 2nd ‘ ( ⟨ 𝐷 , 𝐶 ⟩ −∘F 𝐹 ) ) = ( 2nd𝐺 ) )
72 68 69 71 53 prcof21a ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( ( 1st𝐿 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐿 ) ‘ 𝑦 ) ) ‘ ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) = ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st𝐹 ) ) )
73 63 67 72 3eqtrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st𝐹 ) ) )
74 19 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐸 ∈ Cat )
75 2 6 51 41 64 74 60 61 62 diag2 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐸 ) × { 𝑓 } ) )
76 57 73 75 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd𝑀 ) 𝑦 ) ‘ 𝑓 ) )
77 47 50 76 eqfnfvd ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺func 𝐿 ) ) 𝑦 ) = ( 𝑥 ( 2nd𝑀 ) 𝑦 ) )
78 39 40 77 eqfnovd ( 𝜑 → ( 2nd ‘ ( 𝐺func 𝐿 ) ) = ( 2nd𝑀 ) )
79 38 78 opeq12d ( 𝜑 → ⟨ ( 1st ‘ ( 𝐺func 𝐿 ) ) , ( 2nd ‘ ( 𝐺func 𝐿 ) ) ⟩ = ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ )
80 relfunc Rel ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) )
81 1st2nd ( ( Rel ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ∧ ( 𝐺func 𝐿 ) ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ) → ( 𝐺func 𝐿 ) = ⟨ ( 1st ‘ ( 𝐺func 𝐿 ) ) , ( 2nd ‘ ( 𝐺func 𝐿 ) ) ⟩ )
82 80 15 81 sylancr ( 𝜑 → ( 𝐺func 𝐿 ) = ⟨ ( 1st ‘ ( 𝐺func 𝐿 ) ) , ( 2nd ‘ ( 𝐺func 𝐿 ) ) ⟩ )
83 1st2nd ( ( Rel ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ∧ 𝑀 ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ) → 𝑀 = ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ )
84 80 20 83 sylancr ( 𝜑𝑀 = ⟨ ( 1st𝑀 ) , ( 2nd𝑀 ) ⟩ )
85 79 82 84 3eqtr4d ( 𝜑 → ( 𝐺func 𝐿 ) = 𝑀 )