| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofdiag.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 2 |
|
prcofdiag.m |
⊢ 𝑀 = ( 𝐶 Δfunc 𝐸 ) |
| 3 |
|
prcofdiag.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐸 Func 𝐷 ) ) |
| 4 |
|
prcofdiag.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 5 |
|
prcofdiag.g |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐶 〉 −∘F 𝐹 ) = 𝐺 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) = ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) |
| 8 |
3
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐸 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 9 |
8
|
funcrcl3 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 10 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) |
| 11 |
1 4 9 10
|
diagcl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 12 |
|
eqid |
⊢ ( 𝐸 FuncCat 𝐶 ) = ( 𝐸 FuncCat 𝐶 ) |
| 13 |
10 4 12 3
|
prcoffunca |
⊢ ( 𝜑 → ( 〈 𝐷 , 𝐶 〉 −∘F 𝐹 ) ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) ) |
| 14 |
5 13
|
eqeltrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) ) |
| 15 |
11 14
|
cofucl |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐿 ) ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ) |
| 16 |
15
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) ) |
| 17 |
6 7 16
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) ) |
| 18 |
17
|
ffnd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) Fn ( Base ‘ 𝐶 ) ) |
| 19 |
8
|
funcrcl2 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 20 |
2 4 19 12
|
diagcl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ) |
| 21 |
20
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑀 ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd ‘ 𝑀 ) ) |
| 22 |
6 7 21
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑀 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ ( 𝐸 FuncCat 𝐶 ) ) ) |
| 23 |
22
|
ffnd |
⊢ ( 𝜑 → ( 1st ‘ 𝑀 ) Fn ( Base ‘ 𝐶 ) ) |
| 24 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 25 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐺 ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 27 |
6 24 25 26
|
cofu1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐺 ) ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
| 30 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) |
| 31 |
1 28 29 6 26 30
|
diag1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 32 |
5
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐷 , 𝐶 〉 −∘F 𝐹 ) ) = ( 1st ‘ 𝐺 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( 〈 𝐷 , 𝐶 〉 −∘F 𝐹 ) ) = ( 1st ‘ 𝐺 ) ) |
| 34 |
31 33
|
prcof1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐺 ) ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ) = ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ∘func 𝐹 ) ) |
| 35 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( 𝐸 Func 𝐷 ) ) |
| 36 |
1 2 35 28 6 26
|
prcofdiag1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ∘func 𝐹 ) = ( ( 1st ‘ 𝑀 ) ‘ 𝑥 ) ) |
| 37 |
27 34 36
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑀 ) ‘ 𝑥 ) ) |
| 38 |
18 23 37
|
eqfnfvd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) = ( 1st ‘ 𝑀 ) ) |
| 39 |
6 16
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 40 |
6 21
|
funcfn2 |
⊢ ( 𝜑 → ( 2nd ‘ 𝑀 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 41 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 42 |
|
eqid |
⊢ ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) = ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) |
| 43 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) ) |
| 44 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 45 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 46 |
6 41 42 43 44 45
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) ‘ 𝑥 ) ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) ( ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) ‘ 𝑦 ) ) ) |
| 47 |
46
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 48 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝑀 ) ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ( 2nd ‘ 𝑀 ) ) |
| 49 |
6 41 42 48 44 45
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑀 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝑀 ) ‘ 𝑥 ) ( Hom ‘ ( 𝐸 FuncCat 𝐶 ) ) ( ( 1st ‘ 𝑀 ) ‘ 𝑦 ) ) ) |
| 50 |
49
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑀 ) 𝑦 ) Fn ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 51 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 52 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 53 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐹 ∈ ( 𝐸 Func 𝐷 ) ) |
| 54 |
53
|
func1st2nd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 1st ‘ 𝐹 ) ( 𝐸 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 55 |
51 52 54
|
funcf1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 1st ‘ 𝐹 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 56 |
|
xpco2 |
⊢ ( ( 1st ‘ 𝐹 ) : ( Base ‘ 𝐸 ) ⟶ ( Base ‘ 𝐷 ) → ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st ‘ 𝐹 ) ) = ( ( Base ‘ 𝐸 ) × { 𝑓 } ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st ‘ 𝐹 ) ) = ( ( Base ‘ 𝐸 ) × { 𝑓 } ) ) |
| 58 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 59 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐺 ∈ ( ( 𝐷 FuncCat 𝐶 ) Func ( 𝐸 FuncCat 𝐶 ) ) ) |
| 60 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 61 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 62 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 63 |
6 58 59 60 61 41 62
|
cofu2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 64 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐶 ∈ Cat ) |
| 65 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐷 ∈ Cat ) |
| 66 |
1 6 52 41 64 65 60 61 62
|
diag2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑦 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) |
| 67 |
66
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( 𝑥 ( 2nd ‘ 𝐿 ) 𝑦 ) ‘ 𝑓 ) ) = ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) ) |
| 68 |
|
eqid |
⊢ ( 𝐷 Nat 𝐶 ) = ( 𝐷 Nat 𝐶 ) |
| 69 |
1 6 52 41 64 65 60 61 62 68
|
diag2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐶 ) ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ) |
| 70 |
5
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐷 , 𝐶 〉 −∘F 𝐹 ) ) = ( 2nd ‘ 𝐺 ) ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 2nd ‘ ( 〈 𝐷 , 𝐶 〉 −∘F 𝐹 ) ) = ( 2nd ‘ 𝐺 ) ) |
| 72 |
68 69 71 53
|
prcof21a |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) ) ‘ ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ) = ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st ‘ 𝐹 ) ) ) |
| 73 |
63 67 72
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( ( Base ‘ 𝐷 ) × { 𝑓 } ) ∘ ( 1st ‘ 𝐹 ) ) ) |
| 74 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐸 ∈ Cat ) |
| 75 |
2 6 51 41 64 74 60 61 62
|
diag2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑀 ) 𝑦 ) ‘ 𝑓 ) = ( ( Base ‘ 𝐸 ) × { 𝑓 } ) ) |
| 76 |
57 73 75
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝑀 ) 𝑦 ) ‘ 𝑓 ) ) |
| 77 |
47 50 76
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 𝑦 ) = ( 𝑥 ( 2nd ‘ 𝑀 ) 𝑦 ) ) |
| 78 |
39 40 77
|
eqfnovd |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) = ( 2nd ‘ 𝑀 ) ) |
| 79 |
38 78
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) , ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 〉 = 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 ) |
| 80 |
|
relfunc |
⊢ Rel ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) |
| 81 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ∧ ( 𝐺 ∘func 𝐿 ) ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ) → ( 𝐺 ∘func 𝐿 ) = 〈 ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) , ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 〉 ) |
| 82 |
80 15 81
|
sylancr |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐿 ) = 〈 ( 1st ‘ ( 𝐺 ∘func 𝐿 ) ) , ( 2nd ‘ ( 𝐺 ∘func 𝐿 ) ) 〉 ) |
| 83 |
|
1st2nd |
⊢ ( ( Rel ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ∧ 𝑀 ∈ ( 𝐶 Func ( 𝐸 FuncCat 𝐶 ) ) ) → 𝑀 = 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 ) |
| 84 |
80 20 83
|
sylancr |
⊢ ( 𝜑 → 𝑀 = 〈 ( 1st ‘ 𝑀 ) , ( 2nd ‘ 𝑀 ) 〉 ) |
| 85 |
79 82 84
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 ∘func 𝐿 ) = 𝑀 ) |