Metamath Proof Explorer


Theorem xpco2

Description: Composition of a Cartesian product with a function. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Assertion xpco2 ( 𝐹 : 𝐴𝐵 → ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) = ( 𝐴 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 relco Rel ( ( 𝐵 × 𝐶 ) ∘ 𝐹 )
2 relxp Rel ( 𝐴 × 𝐶 )
3 vex 𝑥 ∈ V
4 vex 𝑧 ∈ V
5 3 4 breldm ( 𝑥 𝐹 𝑧𝑥 ∈ dom 𝐹 )
6 5 ad2antrl ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑥 ∈ dom 𝐹 )
7 fdm ( 𝐹 : 𝐴𝐵 → dom 𝐹 = 𝐴 )
8 7 adantr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → dom 𝐹 = 𝐴 )
9 6 8 eleqtrd ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑥𝐴 )
10 brxp ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ↔ ( 𝑧𝐵𝑦𝐶 ) )
11 10 simprbi ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦𝑦𝐶 )
12 11 ad2antll ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑦𝐶 )
13 9 12 jca ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → ( 𝑥𝐴𝑦𝐶 ) )
14 13 ex ( 𝐹 : 𝐴𝐵 → ( ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) → ( 𝑥𝐴𝑦𝐶 ) ) )
15 14 exlimdv ( 𝐹 : 𝐴𝐵 → ( ∃ 𝑧 ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) → ( 𝑥𝐴𝑦𝐶 ) ) )
16 15 imp ( ( 𝐹 : 𝐴𝐵 ∧ ∃ 𝑧 ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → ( 𝑥𝐴𝑦𝐶 ) )
17 ffvelcdm ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ 𝐵 )
18 17 adantrr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐶 ) ) → ( 𝐹𝑥 ) ∈ 𝐵 )
19 ffvbr ( ( 𝐹 : 𝐴𝐵𝑥𝐴 ) → 𝑥 𝐹 ( 𝐹𝑥 ) )
20 19 adantrr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐶 ) ) → 𝑥 𝐹 ( 𝐹𝑥 ) )
21 simprr ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐶 ) ) → 𝑦𝐶 )
22 brxp ( ( 𝐹𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ↔ ( ( 𝐹𝑥 ) ∈ 𝐵𝑦𝐶 ) )
23 18 21 22 sylanbrc ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐶 ) ) → ( 𝐹𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 )
24 20 23 jca ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐶 ) ) → ( 𝑥 𝐹 ( 𝐹𝑥 ) ∧ ( 𝐹𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) )
25 breq2 ( 𝑧 = ( 𝐹𝑥 ) → ( 𝑥 𝐹 𝑧𝑥 𝐹 ( 𝐹𝑥 ) ) )
26 breq1 ( 𝑧 = ( 𝐹𝑥 ) → ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) )
27 25 26 anbi12d ( 𝑧 = ( 𝐹𝑥 ) → ( ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ↔ ( 𝑥 𝐹 ( 𝐹𝑥 ) ∧ ( 𝐹𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) )
28 18 24 27 spcedv ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝑥𝐴𝑦𝐶 ) ) → ∃ 𝑧 ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) )
29 16 28 impbida ( 𝐹 : 𝐴𝐵 → ( ∃ 𝑧 ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ↔ ( 𝑥𝐴𝑦𝐶 ) ) )
30 vex 𝑦 ∈ V
31 3 30 brco ( 𝑥 ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐹 𝑧𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) )
32 brxp ( 𝑥 ( 𝐴 × 𝐶 ) 𝑦 ↔ ( 𝑥𝐴𝑦𝐶 ) )
33 29 31 32 3bitr4g ( 𝐹 : 𝐴𝐵 → ( 𝑥 ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) 𝑦𝑥 ( 𝐴 × 𝐶 ) 𝑦 ) )
34 1 2 33 eqbrrdiv ( 𝐹 : 𝐴𝐵 → ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) = ( 𝐴 × 𝐶 ) )