| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
⊢ Rel ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) |
| 2 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐶 ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
|
vex |
⊢ 𝑧 ∈ V |
| 5 |
3 4
|
breldm |
⊢ ( 𝑥 𝐹 𝑧 → 𝑥 ∈ dom 𝐹 ) |
| 6 |
5
|
ad2antrl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 7 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → dom 𝐹 = 𝐴 ) |
| 9 |
6 8
|
eleqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑥 ∈ 𝐴 ) |
| 10 |
|
brxp |
⊢ ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
| 11 |
10
|
simprbi |
⊢ ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 → 𝑦 ∈ 𝐶 ) |
| 12 |
11
|
ad2antll |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → 𝑦 ∈ 𝐶 ) |
| 13 |
9 12
|
jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
| 14 |
13
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 15 |
14
|
exlimdv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
| 17 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 18 |
17
|
adantrr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 19 |
|
ffvbr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) |
| 20 |
19
|
adantrr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) |
| 21 |
|
simprr |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
| 22 |
|
brxp |
⊢ ( ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
| 23 |
18 21 22
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) |
| 24 |
20 23
|
jca |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 25 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 𝐹 𝑧 ↔ 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 |
|
breq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 27 |
25 26
|
anbi12d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ↔ ( 𝑥 𝐹 ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ( 𝐵 × 𝐶 ) 𝑦 ) ) ) |
| 28 |
18 24 27
|
spcedv |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 29 |
16 28
|
impbida |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 30 |
|
vex |
⊢ 𝑦 ∈ V |
| 31 |
3 30
|
brco |
⊢ ( 𝑥 ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐹 𝑧 ∧ 𝑧 ( 𝐵 × 𝐶 ) 𝑦 ) ) |
| 32 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐶 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
| 33 |
29 31 32
|
3bitr4g |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) 𝑦 ↔ 𝑥 ( 𝐴 × 𝐶 ) 𝑦 ) ) |
| 34 |
1 2 33
|
eqbrrdiv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 × 𝐶 ) ∘ 𝐹 ) = ( 𝐴 × 𝐶 ) ) |