Metamath Proof Explorer


Theorem ffvbr

Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Assertion ffvbr ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → 𝑋 𝐹 ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → 𝐹 : 𝐴𝐵 )
2 1 ffund ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → Fun 𝐹 )
3 simpr ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → 𝑋𝐴 )
4 1 fdmd ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → dom 𝐹 = 𝐴 )
5 3 4 eleqtrrd ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → 𝑋 ∈ dom 𝐹 )
6 funfvbrb ( Fun 𝐹 → ( 𝑋 ∈ dom 𝐹𝑋 𝐹 ( 𝐹𝑋 ) ) )
7 6 biimpa ( ( Fun 𝐹𝑋 ∈ dom 𝐹 ) → 𝑋 𝐹 ( 𝐹𝑋 ) )
8 2 5 7 syl2anc ( ( 𝐹 : 𝐴𝐵𝑋𝐴 ) → 𝑋 𝐹 ( 𝐹𝑋 ) )