Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffvbr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | ffund | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → Fun 𝐹 ) |
| 3 | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) | |
| 4 | 1 | fdmd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → dom 𝐹 = 𝐴 ) |
| 5 | 3 4 | eleqtrrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ dom 𝐹 ) |
| 6 | funfvbrb | ⊢ ( Fun 𝐹 → ( 𝑋 ∈ dom 𝐹 ↔ 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ) ) | |
| 7 | 6 | biimpa | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ) |
| 8 | 2 5 7 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 𝐹 ( 𝐹 ‘ 𝑋 ) ) |