Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffvbr | |- ( ( F : A --> B /\ X e. A ) -> X F ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F : A --> B /\ X e. A ) -> F : A --> B ) |
|
| 2 | 1 | ffund | |- ( ( F : A --> B /\ X e. A ) -> Fun F ) |
| 3 | simpr | |- ( ( F : A --> B /\ X e. A ) -> X e. A ) |
|
| 4 | 1 | fdmd | |- ( ( F : A --> B /\ X e. A ) -> dom F = A ) |
| 5 | 3 4 | eleqtrrd | |- ( ( F : A --> B /\ X e. A ) -> X e. dom F ) |
| 6 | funfvbrb | |- ( Fun F -> ( X e. dom F <-> X F ( F ` X ) ) ) |
|
| 7 | 6 | biimpa | |- ( ( Fun F /\ X e. dom F ) -> X F ( F ` X ) ) |
| 8 | 2 5 7 | syl2anc | |- ( ( F : A --> B /\ X e. A ) -> X F ( F ` X ) ) |