Metamath Proof Explorer


Theorem ffvbr

Description: Relation with function value. (Contributed by Zhi Wang, 25-Nov-2025)

Ref Expression
Assertion ffvbr
|- ( ( F : A --> B /\ X e. A ) -> X F ( F ` X ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( F : A --> B /\ X e. A ) -> F : A --> B )
2 1 ffund
 |-  ( ( F : A --> B /\ X e. A ) -> Fun F )
3 simpr
 |-  ( ( F : A --> B /\ X e. A ) -> X e. A )
4 1 fdmd
 |-  ( ( F : A --> B /\ X e. A ) -> dom F = A )
5 3 4 eleqtrrd
 |-  ( ( F : A --> B /\ X e. A ) -> X e. dom F )
6 funfvbrb
 |-  ( Fun F -> ( X e. dom F <-> X F ( F ` X ) ) )
7 6 biimpa
 |-  ( ( Fun F /\ X e. dom F ) -> X F ( F ` X ) )
8 2 5 7 syl2anc
 |-  ( ( F : A --> B /\ X e. A ) -> X F ( F ` X ) )