| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
|- Rel ( ( B X. C ) o. F ) |
| 2 |
|
relxp |
|- Rel ( A X. C ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
|
vex |
|- z e. _V |
| 5 |
3 4
|
breldm |
|- ( x F z -> x e. dom F ) |
| 6 |
5
|
ad2antrl |
|- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> x e. dom F ) |
| 7 |
|
fdm |
|- ( F : A --> B -> dom F = A ) |
| 8 |
7
|
adantr |
|- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> dom F = A ) |
| 9 |
6 8
|
eleqtrd |
|- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> x e. A ) |
| 10 |
|
brxp |
|- ( z ( B X. C ) y <-> ( z e. B /\ y e. C ) ) |
| 11 |
10
|
simprbi |
|- ( z ( B X. C ) y -> y e. C ) |
| 12 |
11
|
ad2antll |
|- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> y e. C ) |
| 13 |
9 12
|
jca |
|- ( ( F : A --> B /\ ( x F z /\ z ( B X. C ) y ) ) -> ( x e. A /\ y e. C ) ) |
| 14 |
13
|
ex |
|- ( F : A --> B -> ( ( x F z /\ z ( B X. C ) y ) -> ( x e. A /\ y e. C ) ) ) |
| 15 |
14
|
exlimdv |
|- ( F : A --> B -> ( E. z ( x F z /\ z ( B X. C ) y ) -> ( x e. A /\ y e. C ) ) ) |
| 16 |
15
|
imp |
|- ( ( F : A --> B /\ E. z ( x F z /\ z ( B X. C ) y ) ) -> ( x e. A /\ y e. C ) ) |
| 17 |
|
ffvelcdm |
|- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
| 18 |
17
|
adantrr |
|- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> ( F ` x ) e. B ) |
| 19 |
|
ffvbr |
|- ( ( F : A --> B /\ x e. A ) -> x F ( F ` x ) ) |
| 20 |
19
|
adantrr |
|- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> x F ( F ` x ) ) |
| 21 |
|
simprr |
|- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> y e. C ) |
| 22 |
|
brxp |
|- ( ( F ` x ) ( B X. C ) y <-> ( ( F ` x ) e. B /\ y e. C ) ) |
| 23 |
18 21 22
|
sylanbrc |
|- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> ( F ` x ) ( B X. C ) y ) |
| 24 |
20 23
|
jca |
|- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> ( x F ( F ` x ) /\ ( F ` x ) ( B X. C ) y ) ) |
| 25 |
|
breq2 |
|- ( z = ( F ` x ) -> ( x F z <-> x F ( F ` x ) ) ) |
| 26 |
|
breq1 |
|- ( z = ( F ` x ) -> ( z ( B X. C ) y <-> ( F ` x ) ( B X. C ) y ) ) |
| 27 |
25 26
|
anbi12d |
|- ( z = ( F ` x ) -> ( ( x F z /\ z ( B X. C ) y ) <-> ( x F ( F ` x ) /\ ( F ` x ) ( B X. C ) y ) ) ) |
| 28 |
18 24 27
|
spcedv |
|- ( ( F : A --> B /\ ( x e. A /\ y e. C ) ) -> E. z ( x F z /\ z ( B X. C ) y ) ) |
| 29 |
16 28
|
impbida |
|- ( F : A --> B -> ( E. z ( x F z /\ z ( B X. C ) y ) <-> ( x e. A /\ y e. C ) ) ) |
| 30 |
|
vex |
|- y e. _V |
| 31 |
3 30
|
brco |
|- ( x ( ( B X. C ) o. F ) y <-> E. z ( x F z /\ z ( B X. C ) y ) ) |
| 32 |
|
brxp |
|- ( x ( A X. C ) y <-> ( x e. A /\ y e. C ) ) |
| 33 |
29 31 32
|
3bitr4g |
|- ( F : A --> B -> ( x ( ( B X. C ) o. F ) y <-> x ( A X. C ) y ) ) |
| 34 |
1 2 33
|
eqbrrdiv |
|- ( F : A --> B -> ( ( B X. C ) o. F ) = ( A X. C ) ) |