| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relco |
|
| 2 |
|
relxp |
|
| 3 |
|
vex |
|
| 4 |
|
vex |
|
| 5 |
3 4
|
breldm |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
|
fdm |
|
| 8 |
7
|
adantr |
|
| 9 |
6 8
|
eleqtrd |
|
| 10 |
|
brxp |
|
| 11 |
10
|
simprbi |
|
| 12 |
11
|
ad2antll |
|
| 13 |
9 12
|
jca |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
exlimdv |
|
| 16 |
15
|
imp |
|
| 17 |
|
ffvelcdm |
|
| 18 |
17
|
adantrr |
|
| 19 |
|
ffvbr |
|
| 20 |
19
|
adantrr |
|
| 21 |
|
simprr |
|
| 22 |
|
brxp |
|
| 23 |
18 21 22
|
sylanbrc |
|
| 24 |
20 23
|
jca |
|
| 25 |
|
breq2 |
|
| 26 |
|
breq1 |
|
| 27 |
25 26
|
anbi12d |
|
| 28 |
18 24 27
|
spcedv |
|
| 29 |
16 28
|
impbida |
|
| 30 |
|
vex |
|
| 31 |
3 30
|
brco |
|
| 32 |
|
brxp |
|
| 33 |
29 31 32
|
3bitr4g |
|
| 34 |
1 2 33
|
eqbrrdiv |
|