Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Power Sets
Functions
ffvbr
Next ⟩
xpco2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffvbr
Description:
Relation with function value.
(Contributed by
Zhi Wang
, 25-Nov-2025)
Ref
Expression
Assertion
ffvbr
⊢
F
:
A
⟶
B
∧
X
∈
A
→
X
F
F
⁡
X
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
F
:
A
⟶
B
∧
X
∈
A
→
F
:
A
⟶
B
2
1
ffund
⊢
F
:
A
⟶
B
∧
X
∈
A
→
Fun
⁡
F
3
simpr
⊢
F
:
A
⟶
B
∧
X
∈
A
→
X
∈
A
4
1
fdmd
⊢
F
:
A
⟶
B
∧
X
∈
A
→
dom
⁡
F
=
A
5
3
4
eleqtrrd
⊢
F
:
A
⟶
B
∧
X
∈
A
→
X
∈
dom
⁡
F
6
funfvbrb
⊢
Fun
⁡
F
→
X
∈
dom
⁡
F
↔
X
F
F
⁡
X
7
6
biimpa
⊢
Fun
⁡
F
∧
X
∈
dom
⁡
F
→
X
F
F
⁡
X
8
2
5
7
syl2anc
⊢
F
:
A
⟶
B
∧
X
∈
A
→
X
F
F
⁡
X