Metamath Proof Explorer


Theorem prcof21a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof21a.n 𝑁 = ( 𝐷 Nat 𝐸 )
prcof21a.a ( 𝜑𝐴 ∈ ( 𝐾 𝑁 𝐿 ) )
prcof21a.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = 𝑃 )
prcof21a.f ( 𝜑𝐹𝑈 )
Assertion prcof21a ( 𝜑 → ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) = ( 𝐴 ∘ ( 1st𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 prcof21a.n 𝑁 = ( 𝐷 Nat 𝐸 )
2 prcof21a.a ( 𝜑𝐴 ∈ ( 𝐾 𝑁 𝐿 ) )
3 prcof21a.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = 𝑃 )
4 prcof21a.f ( 𝜑𝐹𝑈 )
5 1 natrcl ( 𝐴 ∈ ( 𝐾 𝑁 𝐿 ) → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) )
6 2 5 syl ( 𝜑 → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) )
7 6 simpld ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
8 6 simprd ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )
9 1 7 8 3 4 prcof2a ( 𝜑 → ( 𝐾 𝑃 𝐿 ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st𝐹 ) ) ) )
10 simpr ( ( 𝜑𝑎 = 𝐴 ) → 𝑎 = 𝐴 )
11 10 coeq1d ( ( 𝜑𝑎 = 𝐴 ) → ( 𝑎 ∘ ( 1st𝐹 ) ) = ( 𝐴 ∘ ( 1st𝐹 ) ) )
12 fvexd ( 𝜑 → ( 1st𝐹 ) ∈ V )
13 2 12 coexd ( 𝜑 → ( 𝐴 ∘ ( 1st𝐹 ) ) ∈ V )
14 9 11 2 13 fvmptd ( 𝜑 → ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) = ( 𝐴 ∘ ( 1st𝐹 ) ) )