| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof21a.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) |
| 2 |
|
prcof21a.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 𝑁 𝐿 ) ) |
| 3 |
|
prcof21a.p |
⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = 𝑃 ) |
| 4 |
|
prcof21a.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) |
| 5 |
1
|
natrcl |
⊢ ( 𝐴 ∈ ( 𝐾 𝑁 𝐿 ) → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝐷 Func 𝐸 ) ∧ 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) ) |
| 7 |
6
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 8 |
6
|
simprd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) |
| 9 |
1 7 8 3 4
|
prcof2a |
⊢ ( 𝜑 → ( 𝐾 𝑃 𝐿 ) = ( 𝑎 ∈ ( 𝐾 𝑁 𝐿 ) ↦ ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → 𝑎 = 𝐴 ) |
| 11 |
10
|
coeq1d |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → ( 𝑎 ∘ ( 1st ‘ 𝐹 ) ) = ( 𝐴 ∘ ( 1st ‘ 𝐹 ) ) ) |
| 12 |
|
fvexd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ∈ V ) |
| 13 |
2 12
|
coexd |
⊢ ( 𝜑 → ( 𝐴 ∘ ( 1st ‘ 𝐹 ) ) ∈ V ) |
| 14 |
9 11 2 13
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) = ( 𝐴 ∘ ( 1st ‘ 𝐹 ) ) ) |