Metamath Proof Explorer


Theorem prcof21a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof21a.n
|- N = ( D Nat E )
prcof21a.a
|- ( ph -> A e. ( K N L ) )
prcof21a.p
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P )
prcof21a.f
|- ( ph -> F e. U )
Assertion prcof21a
|- ( ph -> ( ( K P L ) ` A ) = ( A o. ( 1st ` F ) ) )

Proof

Step Hyp Ref Expression
1 prcof21a.n
 |-  N = ( D Nat E )
2 prcof21a.a
 |-  ( ph -> A e. ( K N L ) )
3 prcof21a.p
 |-  ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P )
4 prcof21a.f
 |-  ( ph -> F e. U )
5 1 natrcl
 |-  ( A e. ( K N L ) -> ( K e. ( D Func E ) /\ L e. ( D Func E ) ) )
6 2 5 syl
 |-  ( ph -> ( K e. ( D Func E ) /\ L e. ( D Func E ) ) )
7 6 simpld
 |-  ( ph -> K e. ( D Func E ) )
8 6 simprd
 |-  ( ph -> L e. ( D Func E ) )
9 1 7 8 3 4 prcof2a
 |-  ( ph -> ( K P L ) = ( a e. ( K N L ) |-> ( a o. ( 1st ` F ) ) ) )
10 simpr
 |-  ( ( ph /\ a = A ) -> a = A )
11 10 coeq1d
 |-  ( ( ph /\ a = A ) -> ( a o. ( 1st ` F ) ) = ( A o. ( 1st ` F ) ) )
12 fvexd
 |-  ( ph -> ( 1st ` F ) e. _V )
13 2 12 coexd
 |-  ( ph -> ( A o. ( 1st ` F ) ) e. _V )
14 9 11 2 13 fvmptd
 |-  ( ph -> ( ( K P L ) ` A ) = ( A o. ( 1st ` F ) ) )