| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof21a.n |
|- N = ( D Nat E ) |
| 2 |
|
prcof21a.a |
|- ( ph -> A e. ( K N L ) ) |
| 3 |
|
prcof21a.p |
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) |
| 4 |
|
prcof21a.f |
|- ( ph -> F e. U ) |
| 5 |
1
|
natrcl |
|- ( A e. ( K N L ) -> ( K e. ( D Func E ) /\ L e. ( D Func E ) ) ) |
| 6 |
2 5
|
syl |
|- ( ph -> ( K e. ( D Func E ) /\ L e. ( D Func E ) ) ) |
| 7 |
6
|
simpld |
|- ( ph -> K e. ( D Func E ) ) |
| 8 |
6
|
simprd |
|- ( ph -> L e. ( D Func E ) ) |
| 9 |
1 7 8 3 4
|
prcof2a |
|- ( ph -> ( K P L ) = ( a e. ( K N L ) |-> ( a o. ( 1st ` F ) ) ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ a = A ) -> a = A ) |
| 11 |
10
|
coeq1d |
|- ( ( ph /\ a = A ) -> ( a o. ( 1st ` F ) ) = ( A o. ( 1st ` F ) ) ) |
| 12 |
|
fvexd |
|- ( ph -> ( 1st ` F ) e. _V ) |
| 13 |
2 12
|
coexd |
|- ( ph -> ( A o. ( 1st ` F ) ) e. _V ) |
| 14 |
9 11 2 13
|
fvmptd |
|- ( ph -> ( ( K P L ) ` A ) = ( A o. ( 1st ` F ) ) ) |