Metamath Proof Explorer


Theorem prcof22a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof21a.n
|- N = ( D Nat E )
prcof21a.a
|- ( ph -> A e. ( K N L ) )
prcof21a.p
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P )
prcof22a.b
|- B = ( Base ` C )
prcof22a.x
|- ( ph -> X e. B )
prcof22a.f
|- ( ph -> F e. ( C Func D ) )
Assertion prcof22a
|- ( ph -> ( ( ( K P L ) ` A ) ` X ) = ( A ` ( ( 1st ` F ) ` X ) ) )

Proof

Step Hyp Ref Expression
1 prcof21a.n
 |-  N = ( D Nat E )
2 prcof21a.a
 |-  ( ph -> A e. ( K N L ) )
3 prcof21a.p
 |-  ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P )
4 prcof22a.b
 |-  B = ( Base ` C )
5 prcof22a.x
 |-  ( ph -> X e. B )
6 prcof22a.f
 |-  ( ph -> F e. ( C Func D ) )
7 1 2 3 6 prcof21a
 |-  ( ph -> ( ( K P L ) ` A ) = ( A o. ( 1st ` F ) ) )
8 7 fveq1d
 |-  ( ph -> ( ( ( K P L ) ` A ) ` X ) = ( ( A o. ( 1st ` F ) ) ` X ) )
9 eqid
 |-  ( Base ` D ) = ( Base ` D )
10 6 func1st2nd
 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )
11 4 9 10 funcf1
 |-  ( ph -> ( 1st ` F ) : B --> ( Base ` D ) )
12 11 5 fvco3d
 |-  ( ph -> ( ( A o. ( 1st ` F ) ) ` X ) = ( A ` ( ( 1st ` F ) ` X ) ) )
13 8 12 eqtrd
 |-  ( ph -> ( ( ( K P L ) ` A ) ` X ) = ( A ` ( ( 1st ` F ) ` X ) ) )