| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcof21a.n |
|- N = ( D Nat E ) |
| 2 |
|
prcof21a.a |
|- ( ph -> A e. ( K N L ) ) |
| 3 |
|
prcof21a.p |
|- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) |
| 4 |
|
prcof22a.b |
|- B = ( Base ` C ) |
| 5 |
|
prcof22a.x |
|- ( ph -> X e. B ) |
| 6 |
|
prcof22a.f |
|- ( ph -> F e. ( C Func D ) ) |
| 7 |
1 2 3 6
|
prcof21a |
|- ( ph -> ( ( K P L ) ` A ) = ( A o. ( 1st ` F ) ) ) |
| 8 |
7
|
fveq1d |
|- ( ph -> ( ( ( K P L ) ` A ) ` X ) = ( ( A o. ( 1st ` F ) ) ` X ) ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
6
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 11 |
4 9 10
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 12 |
11 5
|
fvco3d |
|- ( ph -> ( ( A o. ( 1st ` F ) ) ` X ) = ( A ` ( ( 1st ` F ) ` X ) ) ) |
| 13 |
8 12
|
eqtrd |
|- ( ph -> ( ( ( K P L ) ` A ) ` X ) = ( A ` ( ( 1st ` F ) ` X ) ) ) |