| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prcofdiag.l |
|- L = ( C DiagFunc D ) |
| 2 |
|
prcofdiag.m |
|- M = ( C DiagFunc E ) |
| 3 |
|
prcofdiag.f |
|- ( ph -> F e. ( E Func D ) ) |
| 4 |
|
prcofdiag.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
prcofdiag1.b |
|- B = ( Base ` C ) |
| 6 |
|
prcofdiag1.x |
|- ( ph -> X e. B ) |
| 7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 8 |
3
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( E Func D ) ( 2nd ` F ) ) |
| 9 |
8
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 10 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 11 |
1 4 9 5 6 10
|
diag1cl |
|- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 12 |
3 11
|
cofucl |
|- ( ph -> ( ( ( 1st ` L ) ` X ) o.func F ) e. ( E Func C ) ) |
| 13 |
12
|
func1st2nd |
|- ( ph -> ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ( E Func C ) ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ) |
| 14 |
7 5 13
|
funcf1 |
|- ( ph -> ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) : ( Base ` E ) --> B ) |
| 15 |
14
|
ffnd |
|- ( ph -> ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) Fn ( Base ` E ) ) |
| 16 |
8
|
funcrcl2 |
|- ( ph -> E e. Cat ) |
| 17 |
|
eqid |
|- ( ( 1st ` M ) ` X ) = ( ( 1st ` M ) ` X ) |
| 18 |
2 4 16 5 6 17
|
diag1cl |
|- ( ph -> ( ( 1st ` M ) ` X ) e. ( E Func C ) ) |
| 19 |
18
|
func1st2nd |
|- ( ph -> ( 1st ` ( ( 1st ` M ) ` X ) ) ( E Func C ) ( 2nd ` ( ( 1st ` M ) ` X ) ) ) |
| 20 |
7 5 19
|
funcf1 |
|- ( ph -> ( 1st ` ( ( 1st ` M ) ` X ) ) : ( Base ` E ) --> B ) |
| 21 |
20
|
ffnd |
|- ( ph -> ( 1st ` ( ( 1st ` M ) ` X ) ) Fn ( Base ` E ) ) |
| 22 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> C e. Cat ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> D e. Cat ) |
| 24 |
6
|
adantr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> X e. B ) |
| 25 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 26 |
7 25 8
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` E ) --> ( Base ` D ) ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` E ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 28 |
1 22 23 5 24 10 25 27
|
diag11 |
|- ( ( ph /\ x e. ( Base ` E ) ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` ( ( 1st ` F ) ` x ) ) = X ) |
| 29 |
3
|
adantr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> F e. ( E Func D ) ) |
| 30 |
11
|
adantr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 31 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> x e. ( Base ` E ) ) |
| 32 |
7 29 30 31
|
cofu1 |
|- ( ( ph /\ x e. ( Base ` E ) ) -> ( ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ` x ) = ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` ( ( 1st ` F ) ` x ) ) ) |
| 33 |
16
|
adantr |
|- ( ( ph /\ x e. ( Base ` E ) ) -> E e. Cat ) |
| 34 |
2 22 33 5 24 17 7 31
|
diag11 |
|- ( ( ph /\ x e. ( Base ` E ) ) -> ( ( 1st ` ( ( 1st ` M ) ` X ) ) ` x ) = X ) |
| 35 |
28 32 34
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` E ) ) -> ( ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ` x ) = ( ( 1st ` ( ( 1st ` M ) ` X ) ) ` x ) ) |
| 36 |
15 21 35
|
eqfnfvd |
|- ( ph -> ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) = ( 1st ` ( ( 1st ` M ) ` X ) ) ) |
| 37 |
7 13
|
funcfn2 |
|- ( ph -> ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) Fn ( ( Base ` E ) X. ( Base ` E ) ) ) |
| 38 |
7 19
|
funcfn2 |
|- ( ph -> ( 2nd ` ( ( 1st ` M ) ` X ) ) Fn ( ( Base ` E ) X. ( Base ` E ) ) ) |
| 39 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 40 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 41 |
13
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ( E Func C ) ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ) |
| 42 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> x e. ( Base ` E ) ) |
| 43 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> y e. ( Base ` E ) ) |
| 44 |
7 39 40 41 42 43
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( x ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) y ) : ( x ( Hom ` E ) y ) --> ( ( ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ` x ) ( Hom ` C ) ( ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) ` y ) ) ) |
| 45 |
44
|
ffnd |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( x ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) y ) Fn ( x ( Hom ` E ) y ) ) |
| 46 |
19
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( 1st ` ( ( 1st ` M ) ` X ) ) ( E Func C ) ( 2nd ` ( ( 1st ` M ) ` X ) ) ) |
| 47 |
7 39 40 46 42 43
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( x ( 2nd ` ( ( 1st ` M ) ` X ) ) y ) : ( x ( Hom ` E ) y ) --> ( ( ( 1st ` ( ( 1st ` M ) ` X ) ) ` x ) ( Hom ` C ) ( ( 1st ` ( ( 1st ` M ) ` X ) ) ` y ) ) ) |
| 48 |
47
|
ffnd |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( x ( 2nd ` ( ( 1st ` M ) ` X ) ) y ) Fn ( x ( Hom ` E ) y ) ) |
| 49 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> C e. Cat ) |
| 50 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> D e. Cat ) |
| 51 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> X e. B ) |
| 52 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( 1st ` F ) ( E Func D ) ( 2nd ` F ) ) |
| 53 |
7 25 52
|
funcf1 |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( 1st ` F ) : ( Base ` E ) --> ( Base ` D ) ) |
| 54 |
42
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> x e. ( Base ` E ) ) |
| 55 |
53 54
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 56 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 57 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 58 |
43
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> y e. ( Base ` E ) ) |
| 59 |
53 58
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 60 |
7 39 56 52 54 58
|
funcf2 |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` E ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 61 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> f e. ( x ( Hom ` E ) y ) ) |
| 62 |
60 61
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 63 |
1 49 50 5 51 10 25 55 56 57 59 62
|
diag12 |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( 1st ` L ) ` X ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( Id ` C ) ` X ) ) |
| 64 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> F e. ( E Func D ) ) |
| 65 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 66 |
7 64 65 54 58 39 61
|
cofu2 |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( x ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( 1st ` L ) ` X ) ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 67 |
16
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> E e. Cat ) |
| 68 |
2 49 67 5 51 17 7 54 39 57 58 61
|
diag12 |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( x ( 2nd ` ( ( 1st ` M ) ` X ) ) y ) ` f ) = ( ( Id ` C ) ` X ) ) |
| 69 |
63 66 68
|
3eqtr4d |
|- ( ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) /\ f e. ( x ( Hom ` E ) y ) ) -> ( ( x ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) y ) ` f ) = ( ( x ( 2nd ` ( ( 1st ` M ) ` X ) ) y ) ` f ) ) |
| 70 |
45 48 69
|
eqfnfvd |
|- ( ( ph /\ ( x e. ( Base ` E ) /\ y e. ( Base ` E ) ) ) -> ( x ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) y ) = ( x ( 2nd ` ( ( 1st ` M ) ` X ) ) y ) ) |
| 71 |
37 38 70
|
eqfnovd |
|- ( ph -> ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) = ( 2nd ` ( ( 1st ` M ) ` X ) ) ) |
| 72 |
36 71
|
opeq12d |
|- ( ph -> <. ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) , ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) >. = <. ( 1st ` ( ( 1st ` M ) ` X ) ) , ( 2nd ` ( ( 1st ` M ) ` X ) ) >. ) |
| 73 |
|
relfunc |
|- Rel ( E Func C ) |
| 74 |
|
1st2nd |
|- ( ( Rel ( E Func C ) /\ ( ( ( 1st ` L ) ` X ) o.func F ) e. ( E Func C ) ) -> ( ( ( 1st ` L ) ` X ) o.func F ) = <. ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) , ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) >. ) |
| 75 |
73 12 74
|
sylancr |
|- ( ph -> ( ( ( 1st ` L ) ` X ) o.func F ) = <. ( 1st ` ( ( ( 1st ` L ) ` X ) o.func F ) ) , ( 2nd ` ( ( ( 1st ` L ) ` X ) o.func F ) ) >. ) |
| 76 |
|
1st2nd |
|- ( ( Rel ( E Func C ) /\ ( ( 1st ` M ) ` X ) e. ( E Func C ) ) -> ( ( 1st ` M ) ` X ) = <. ( 1st ` ( ( 1st ` M ) ` X ) ) , ( 2nd ` ( ( 1st ` M ) ` X ) ) >. ) |
| 77 |
73 18 76
|
sylancr |
|- ( ph -> ( ( 1st ` M ) ` X ) = <. ( 1st ` ( ( 1st ` M ) ` X ) ) , ( 2nd ` ( ( 1st ` M ) ` X ) ) >. ) |
| 78 |
72 75 77
|
3eqtr4d |
|- ( ph -> ( ( ( 1st ` L ) ` X ) o.func F ) = ( ( 1st ` M ) ` X ) ) |