Metamath Proof Explorer


Theorem prcof22a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof21a.n N = D Nat E
prcof21a.a φ A K N L
prcof21a.p No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) with typecode |-
prcof22a.b B = Base C
prcof22a.x φ X B
prcof22a.f φ F C Func D
Assertion prcof22a φ K P L A X = A 1 st F X

Proof

Step Hyp Ref Expression
1 prcof21a.n N = D Nat E
2 prcof21a.a φ A K N L
3 prcof21a.p Could not format ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. D , E >. -o.F F ) ) = P ) with typecode |-
4 prcof22a.b B = Base C
5 prcof22a.x φ X B
6 prcof22a.f φ F C Func D
7 1 2 3 6 prcof21a φ K P L A = A 1 st F
8 7 fveq1d φ K P L A X = A 1 st F X
9 eqid Base D = Base D
10 6 func1st2nd φ 1 st F C Func D 2 nd F
11 4 9 10 funcf1 φ 1 st F : B Base D
12 11 5 fvco3d φ A 1 st F X = A 1 st F X
13 8 12 eqtrd φ K P L A X = A 1 st F X