Metamath Proof Explorer


Theorem prcof22a

Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses prcof21a.n 𝑁 = ( 𝐷 Nat 𝐸 )
prcof21a.a ( 𝜑𝐴 ∈ ( 𝐾 𝑁 𝐿 ) )
prcof21a.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = 𝑃 )
prcof22a.b 𝐵 = ( Base ‘ 𝐶 )
prcof22a.x ( 𝜑𝑋𝐵 )
prcof22a.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
Assertion prcof22a ( 𝜑 → ( ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) ‘ 𝑋 ) = ( 𝐴 ‘ ( ( 1st𝐹 ) ‘ 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 prcof21a.n 𝑁 = ( 𝐷 Nat 𝐸 )
2 prcof21a.a ( 𝜑𝐴 ∈ ( 𝐾 𝑁 𝐿 ) )
3 prcof21a.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = 𝑃 )
4 prcof22a.b 𝐵 = ( Base ‘ 𝐶 )
5 prcof22a.x ( 𝜑𝑋𝐵 )
6 prcof22a.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
7 1 2 3 6 prcof21a ( 𝜑 → ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) = ( 𝐴 ∘ ( 1st𝐹 ) ) )
8 7 fveq1d ( 𝜑 → ( ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) ‘ 𝑋 ) = ( ( 𝐴 ∘ ( 1st𝐹 ) ) ‘ 𝑋 ) )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 6 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
11 4 9 10 funcf1 ( 𝜑 → ( 1st𝐹 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
12 11 5 fvco3d ( 𝜑 → ( ( 𝐴 ∘ ( 1st𝐹 ) ) ‘ 𝑋 ) = ( 𝐴 ‘ ( ( 1st𝐹 ) ‘ 𝑋 ) ) )
13 8 12 eqtrd ( 𝜑 → ( ( ( 𝐾 𝑃 𝐿 ) ‘ 𝐴 ) ‘ 𝑋 ) = ( 𝐴 ‘ ( ( 1st𝐹 ) ‘ 𝑋 ) ) )