Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fulloppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| ffthoppf.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ) | ||
| Assertion | ffthoppf | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fulloppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | ffthoppf.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) ) | |
| 4 | 3 | elin1d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Full 𝐷 ) ) |
| 5 | 1 2 4 | fulloppf | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Full 𝑃 ) ) |
| 6 | 3 | elin2d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Faith 𝐷 ) ) |
| 7 | 1 2 6 | fthoppf | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Faith 𝑃 ) ) |
| 8 | 5 7 | elind | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) ) |