Metamath Proof Explorer


Theorem ffthoppf

Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025)

Ref Expression
Hypotheses fulloppf.o 𝑂 = ( oppCat ‘ 𝐶 )
fulloppf.p 𝑃 = ( oppCat ‘ 𝐷 )
ffthoppf.f ( 𝜑𝐹 ∈ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) )
Assertion ffthoppf ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 fulloppf.o 𝑂 = ( oppCat ‘ 𝐶 )
2 fulloppf.p 𝑃 = ( oppCat ‘ 𝐷 )
3 ffthoppf.f ( 𝜑𝐹 ∈ ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) )
4 3 elin1d ( 𝜑𝐹 ∈ ( 𝐶 Full 𝐷 ) )
5 1 2 4 fulloppf ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Full 𝑃 ) )
6 3 elin2d ( 𝜑𝐹 ∈ ( 𝐶 Faith 𝐷 ) )
7 1 2 6 fthoppf ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Faith 𝑃 ) )
8 5 7 elind ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( ( 𝑂 Full 𝑃 ) ∩ ( 𝑂 Faith 𝑃 ) ) )