| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulloppf.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fulloppf.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fthoppf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Faith 𝐷 ) ) |
| 4 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
| 5 |
4
|
sseli |
⊢ ( 𝐹 ∈ ( 𝐶 Faith 𝐷 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 |
|
oppfval2 |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 7 |
3 5 6
|
3syl |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 8 |
|
relfth |
⊢ Rel ( 𝐶 Faith 𝐷 ) |
| 9 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Faith 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Faith 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Faith 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 10 |
8 3 9
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Faith 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 11 |
1 2 10
|
fthoppc |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝑂 Faith 𝑃 ) tpos ( 2nd ‘ 𝐹 ) ) |
| 12 |
|
df-br |
⊢ ( ( 1st ‘ 𝐹 ) ( 𝑂 Faith 𝑃 ) tpos ( 2nd ‘ 𝐹 ) ↔ 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝑂 Faith 𝑃 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ∈ ( 𝑂 Faith 𝑃 ) ) |
| 14 |
7 13
|
eqeltrd |
⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Faith 𝑃 ) ) |