Metamath Proof Explorer


Theorem fthoppf

Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in Adamek p. 39. (Contributed by Zhi Wang, 26-Nov-2025)

Ref Expression
Hypotheses fulloppf.o 𝑂 = ( oppCat ‘ 𝐶 )
fulloppf.p 𝑃 = ( oppCat ‘ 𝐷 )
fthoppf.f ( 𝜑𝐹 ∈ ( 𝐶 Faith 𝐷 ) )
Assertion fthoppf ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Faith 𝑃 ) )

Proof

Step Hyp Ref Expression
1 fulloppf.o 𝑂 = ( oppCat ‘ 𝐶 )
2 fulloppf.p 𝑃 = ( oppCat ‘ 𝐷 )
3 fthoppf.f ( 𝜑𝐹 ∈ ( 𝐶 Faith 𝐷 ) )
4 fthfunc ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 )
5 4 sseli ( 𝐹 ∈ ( 𝐶 Faith 𝐷 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
6 oppfval2 ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝐹 ) = ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ )
7 3 5 6 3syl ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ )
8 relfth Rel ( 𝐶 Faith 𝐷 )
9 1st2ndbr ( ( Rel ( 𝐶 Faith 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Faith 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Faith 𝐷 ) ( 2nd𝐹 ) )
10 8 3 9 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Faith 𝐷 ) ( 2nd𝐹 ) )
11 1 2 10 fthoppc ( 𝜑 → ( 1st𝐹 ) ( 𝑂 Faith 𝑃 ) tpos ( 2nd𝐹 ) )
12 df-br ( ( 1st𝐹 ) ( 𝑂 Faith 𝑃 ) tpos ( 2nd𝐹 ) ↔ ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ ∈ ( 𝑂 Faith 𝑃 ) )
13 11 12 sylib ( 𝜑 → ⟨ ( 1st𝐹 ) , tpos ( 2nd𝐹 ) ⟩ ∈ ( 𝑂 Faith 𝑃 ) )
14 7 13 eqeltrd ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Faith 𝑃 ) )