| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fulloppf.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fulloppf.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fthoppf.f |
|- ( ph -> F e. ( C Faith D ) ) |
| 4 |
|
fthfunc |
|- ( C Faith D ) C_ ( C Func D ) |
| 5 |
4
|
sseli |
|- ( F e. ( C Faith D ) -> F e. ( C Func D ) ) |
| 6 |
|
oppfval2 |
|- ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 7 |
3 5 6
|
3syl |
|- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 8 |
|
relfth |
|- Rel ( C Faith D ) |
| 9 |
|
1st2ndbr |
|- ( ( Rel ( C Faith D ) /\ F e. ( C Faith D ) ) -> ( 1st ` F ) ( C Faith D ) ( 2nd ` F ) ) |
| 10 |
8 3 9
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Faith D ) ( 2nd ` F ) ) |
| 11 |
1 2 10
|
fthoppc |
|- ( ph -> ( 1st ` F ) ( O Faith P ) tpos ( 2nd ` F ) ) |
| 12 |
|
df-br |
|- ( ( 1st ` F ) ( O Faith P ) tpos ( 2nd ` F ) <-> <. ( 1st ` F ) , tpos ( 2nd ` F ) >. e. ( O Faith P ) ) |
| 13 |
11 12
|
sylib |
|- ( ph -> <. ( 1st ` F ) , tpos ( 2nd ` F ) >. e. ( O Faith P ) ) |
| 14 |
7 13
|
eqeltrd |
|- ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) |