Metamath Proof Explorer


Theorem fthoppf

Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in Adamek p. 39. (Contributed by Zhi Wang, 26-Nov-2025)

Ref Expression
Hypotheses fulloppf.o O = oppCat C
fulloppf.p P = oppCat D
fthoppf.f φ F C Faith D
Assertion fthoppf Could not format assertion : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fulloppf.o O = oppCat C
2 fulloppf.p P = oppCat D
3 fthoppf.f φ F C Faith D
4 fthfunc C Faith D C Func D
5 4 sseli F C Faith D F C Func D
6 oppfval2 Could not format ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) : No typesetting found for |- ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) with typecode |-
7 3 5 6 3syl Could not format ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) with typecode |-
8 relfth Rel C Faith D
9 1st2ndbr Rel C Faith D F C Faith D 1 st F C Faith D 2 nd F
10 8 3 9 sylancr φ 1 st F C Faith D 2 nd F
11 1 2 10 fthoppc φ 1 st F O Faith P tpos 2 nd F
12 df-br 1 st F O Faith P tpos 2 nd F 1 st F tpos 2 nd F O Faith P
13 11 12 sylib φ 1 st F tpos 2 nd F O Faith P
14 7 13 eqeltrd Could not format ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) with typecode |-