Metamath Proof Explorer


Theorem relfth

Description: The set of faithful functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion relfth RelCFaithD

Proof

Step Hyp Ref Expression
1 fthfunc CFaithDCFuncD
2 relfunc RelCFuncD
3 relss CFaithDCFuncDRelCFuncDRelCFaithD
4 1 2 3 mp2 RelCFaithD