Metamath Proof Explorer


Theorem fthfunc

Description: A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion fthfunc CFaithDCFuncD

Proof

Step Hyp Ref Expression
1 oveq1 c=CcFaithd=CFaithd
2 oveq1 c=CcFuncd=CFuncd
3 1 2 sseq12d c=CcFaithdcFuncdCFaithdCFuncd
4 oveq2 d=DCFaithd=CFaithD
5 oveq2 d=DCFuncd=CFuncD
6 4 5 sseq12d d=DCFaithdCFuncdCFaithDCFuncD
7 ovex cFuncdV
8 simpl fcFuncdgxBasecyBasecFunxgy-1fcFuncdg
9 8 ssopab2i fg|fcFuncdgxBasecyBasecFunxgy-1fg|fcFuncdg
10 opabss fg|fcFuncdgcFuncd
11 9 10 sstri fg|fcFuncdgxBasecyBasecFunxgy-1cFuncd
12 7 11 ssexi fg|fcFuncdgxBasecyBasecFunxgy-1V
13 df-fth Faith=cCat,dCatfg|fcFuncdgxBasecyBasecFunxgy-1
14 13 ovmpt4g cCatdCatfg|fcFuncdgxBasecyBasecFunxgy-1VcFaithd=fg|fcFuncdgxBasecyBasecFunxgy-1
15 12 14 mp3an3 cCatdCatcFaithd=fg|fcFuncdgxBasecyBasecFunxgy-1
16 15 11 eqsstrdi cCatdCatcFaithdcFuncd
17 3 6 16 vtocl2ga CCatDCatCFaithDCFuncD
18 13 mpondm0 ¬CCatDCatCFaithD=
19 0ss CFuncD
20 18 19 eqsstrdi ¬CCatDCatCFaithDCFuncD
21 17 20 pm2.61i CFaithDCFuncD