Step |
Hyp |
Ref |
Expression |
1 |
|
isfull.b |
|
2 |
|
isfull.j |
|
3 |
|
fullfunc |
|
4 |
3
|
ssbri |
|
5 |
|
df-br |
|
6 |
|
funcrcl |
|
7 |
5 6
|
sylbi |
|
8 |
|
oveq12 |
|
9 |
8
|
breqd |
|
10 |
|
simpl |
|
11 |
10
|
fveq2d |
|
12 |
11 1
|
eqtr4di |
|
13 |
|
simpr |
|
14 |
13
|
fveq2d |
|
15 |
14 2
|
eqtr4di |
|
16 |
15
|
oveqd |
|
17 |
16
|
eqeq2d |
|
18 |
12 17
|
raleqbidv |
|
19 |
12 18
|
raleqbidv |
|
20 |
9 19
|
anbi12d |
|
21 |
20
|
opabbidv |
|
22 |
|
df-full |
|
23 |
|
ovex |
|
24 |
|
simpl |
|
25 |
24
|
ssopab2i |
|
26 |
|
opabss |
|
27 |
25 26
|
sstri |
|
28 |
23 27
|
ssexi |
|
29 |
21 22 28
|
ovmpoa |
|
30 |
7 29
|
syl |
|
31 |
30
|
breqd |
|
32 |
|
relfunc |
|
33 |
32
|
brrelex12i |
|
34 |
|
breq12 |
|
35 |
|
simpr |
|
36 |
35
|
oveqd |
|
37 |
36
|
rneqd |
|
38 |
|
simpl |
|
39 |
38
|
fveq1d |
|
40 |
38
|
fveq1d |
|
41 |
39 40
|
oveq12d |
|
42 |
37 41
|
eqeq12d |
|
43 |
42
|
2ralbidv |
|
44 |
34 43
|
anbi12d |
|
45 |
|
eqid |
|
46 |
44 45
|
brabga |
|
47 |
33 46
|
syl |
|
48 |
31 47
|
bitrd |
|
49 |
48
|
bianabs |
|
50 |
4 49
|
biadanii |
|