Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppf.o | |- O = ( oppCat ` C ) |
|
| fulloppf.p | |- P = ( oppCat ` D ) |
||
| ffthoppf.f | |- ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
||
| Assertion | ffthoppf | |- ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppf.o | |- O = ( oppCat ` C ) |
|
| 2 | fulloppf.p | |- P = ( oppCat ` D ) |
|
| 3 | ffthoppf.f | |- ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) ) |
|
| 4 | 3 | elin1d | |- ( ph -> F e. ( C Full D ) ) |
| 5 | 1 2 4 | fulloppf | |- ( ph -> ( oppFunc ` F ) e. ( O Full P ) ) |
| 6 | 3 | elin2d | |- ( ph -> F e. ( C Faith D ) ) |
| 7 | 1 2 6 | fthoppf | |- ( ph -> ( oppFunc ` F ) e. ( O Faith P ) ) |
| 8 | 5 7 | elind | |- ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) ) |