Metamath Proof Explorer


Theorem ffthoppf

Description: The opposite functor of a fully faithful functor is also full and faithful. (Contributed by Zhi Wang, 26-Nov-2025)

Ref Expression
Hypotheses fulloppf.o
|- O = ( oppCat ` C )
fulloppf.p
|- P = ( oppCat ` D )
ffthoppf.f
|- ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) )
Assertion ffthoppf
|- ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) )

Proof

Step Hyp Ref Expression
1 fulloppf.o
 |-  O = ( oppCat ` C )
2 fulloppf.p
 |-  P = ( oppCat ` D )
3 ffthoppf.f
 |-  ( ph -> F e. ( ( C Full D ) i^i ( C Faith D ) ) )
4 3 elin1d
 |-  ( ph -> F e. ( C Full D ) )
5 1 2 4 fulloppf
 |-  ( ph -> ( oppFunc ` F ) e. ( O Full P ) )
6 3 elin2d
 |-  ( ph -> F e. ( C Faith D ) )
7 1 2 6 fthoppf
 |-  ( ph -> ( oppFunc ` F ) e. ( O Faith P ) )
8 5 7 elind
 |-  ( ph -> ( oppFunc ` F ) e. ( ( O Full P ) i^i ( O Faith P ) ) )