Description: The domain of ( C Limit D ) is a relation. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmlmd2 | |- Rel dom ( C Limit D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc | |- Rel ( D Func C ) |
|
| 2 | ovex | |- ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) e. _V |
|
| 3 | lmdfval | |- ( C Limit D ) = ( f e. ( D Func C ) |-> ( ( oppFunc ` ( C DiagFunc D ) ) ( ( oppCat ` C ) UP ( oppCat ` ( D FuncCat C ) ) ) f ) ) |
|
| 4 | 2 3 | dmmpti | |- dom ( C Limit D ) = ( D Func C ) |
| 5 | 4 | releqi | |- ( Rel dom ( C Limit D ) <-> Rel ( D Func C ) ) |
| 6 | 1 5 | mpbir | |- Rel dom ( C Limit D ) |