Metamath Proof Explorer


Theorem cnelsubc

Description: Remark 4.2(2) of Adamek p. 48. There exists acategory satisfying all conditions for a subcategory but the compatibility of identity morphisms. Therefore such condition in df-subc is necessary. A stronger statement than nelsubc3 . (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Assertion cnelsubc c Cat j s j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat

Proof

Step Hyp Ref Expression
1 fvex Hom 𝑓 SetCat 1 𝑜 V
2 1oex 1 𝑜 V
3 eqid Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g = Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g
4 eqid f 2 𝑜 , g 2 𝑜 f g = f 2 𝑜 , g 2 𝑜 f g
5 eqid SetCat 1 𝑜 = SetCat 1 𝑜
6 eqid Hom 𝑓 SetCat 1 𝑜 = Hom 𝑓 SetCat 1 𝑜
7 eqid 1 𝑜 = 1 𝑜
8 eqid Hom 𝑓 Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g = Hom 𝑓 Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g
9 eqid Id Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g = Id Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g
10 eqid Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g cat Hom 𝑓 SetCat 1 𝑜 = Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g cat Hom 𝑓 SetCat 1 𝑜
11 3 4 5 6 7 8 9 10 setc1onsubc Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g Cat Hom 𝑓 SetCat 1 𝑜 Fn 1 𝑜 × 1 𝑜 Hom 𝑓 SetCat 1 𝑜 cat Hom 𝑓 Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g ¬ x 1 𝑜 Id Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g x x Hom 𝑓 SetCat 1 𝑜 x Base ndx Hom ndx 2 𝑜 comp ndx f 2 𝑜 , g 2 𝑜 f g cat Hom 𝑓 SetCat 1 𝑜 Cat
12 1 2 11 cnelsubclem c Cat j s j Fn s × s j cat Hom 𝑓 c ¬ x s Id c x x j x c cat j Cat