Metamath Proof Explorer


Theorem cnvcnv3

Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Assertion cnvcnv3 R-1-1=xy|xRy

Proof

Step Hyp Ref Expression
1 df-cnv R-1-1=xy|yR-1x
2 vex yV
3 vex xV
4 2 3 brcnv yR-1xxRy
5 4 opabbii xy|yR-1x=xy|xRy
6 1 5 eqtri R-1-1=xy|xRy