Metamath Proof Explorer


Theorem cnvepimaex

Description: The image of converse epsilon exists, proof via imaexALTV (see also cnvepima and uniexg for alternate way). (Contributed by Peter Mazsa, 22-Mar-2023)

Ref Expression
Assertion cnvepimaex A V E -1 A V

Proof

Step Hyp Ref Expression
1 cnvepresex A V E -1 A V
2 imaexALTV E -1 V E -1 A V A V E -1 A V
3 2 olcs E -1 A V A V E -1 A V
4 1 3 mpancom A V E -1 A V