Metamath Proof Explorer


Theorem cnvepimaex

Description: The image of converse epsilon exists, proof via imaexALTV (see also cnvepima and uniexg for alternate way). (Contributed by Peter Mazsa, 22-Mar-2023)

Ref Expression
Assertion cnvepimaex ( 𝐴𝑉 → ( E “ 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 cnvepresex ( 𝐴𝑉 → ( E ↾ 𝐴 ) ∈ V )
2 imaexALTV ( ( E ∈ V ∨ ( ( E ↾ 𝐴 ) ∈ V ∧ 𝐴𝑉 ) ) → ( E “ 𝐴 ) ∈ V )
3 2 olcs ( ( ( E ↾ 𝐴 ) ∈ V ∧ 𝐴𝑉 ) → ( E “ 𝐴 ) ∈ V )
4 1 3 mpancom ( 𝐴𝑉 → ( E “ 𝐴 ) ∈ V )