Step |
Hyp |
Ref |
Expression |
1 |
|
imassrn |
⊢ ( 𝐴 “ 𝐵 ) ⊆ ran 𝐴 |
2 |
|
rnexg |
⊢ ( 𝐴 ∈ 𝑉 → ran 𝐴 ∈ V ) |
3 |
|
ssexg |
⊢ ( ( ( 𝐴 “ 𝐵 ) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V ) → ( 𝐴 “ 𝐵 ) ∈ V ) |
4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ 𝐵 ) ∈ V ) |
5 |
|
qsexg |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝐵 / 𝐴 ) ∈ V ) |
6 |
|
uniexg |
⊢ ( ( 𝐵 / 𝐴 ) ∈ V → ∪ ( 𝐵 / 𝐴 ) ∈ V ) |
7 |
5 6
|
syl |
⊢ ( 𝐵 ∈ 𝑋 → ∪ ( 𝐵 / 𝐴 ) ∈ V ) |
8 |
|
uniqsALTV |
⊢ ( ( 𝐴 ↾ 𝐵 ) ∈ 𝑊 → ∪ ( 𝐵 / 𝐴 ) = ( 𝐴 “ 𝐵 ) ) |
9 |
8
|
eleq1d |
⊢ ( ( 𝐴 ↾ 𝐵 ) ∈ 𝑊 → ( ∪ ( 𝐵 / 𝐴 ) ∈ V ↔ ( 𝐴 “ 𝐵 ) ∈ V ) ) |
10 |
7 9
|
syl5ib |
⊢ ( ( 𝐴 ↾ 𝐵 ) ∈ 𝑊 → ( 𝐵 ∈ 𝑋 → ( 𝐴 “ 𝐵 ) ∈ V ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝐴 ↾ 𝐵 ) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 “ 𝐵 ) ∈ V ) |
12 |
4 11
|
jaoi |
⊢ ( ( 𝐴 ∈ 𝑉 ∨ ( ( 𝐴 ↾ 𝐵 ) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 “ 𝐵 ) ∈ V ) |