Metamath Proof Explorer


Theorem imaexALTV

Description: Existence of an image of a class. Theorem 3.17 of Monk1 p. 39. (cf. imaexg ) with weakened antecedent: only the restricion of A by a set needs to be a set, not A itself, see e.g. cnvepimaex . (Contributed by Peter Mazsa, 22-Feb-2023) (Proof modification is discouraged.)

Ref Expression
Assertion imaexALTV ( ( 𝐴𝑉 ∨ ( ( 𝐴𝐵 ) ∈ 𝑊𝐵𝑋 ) ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 imassrn ( 𝐴𝐵 ) ⊆ ran 𝐴
2 rnexg ( 𝐴𝑉 → ran 𝐴 ∈ V )
3 ssexg ( ( ( 𝐴𝐵 ) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
4 1 2 3 sylancr ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
5 qsexg ( 𝐵𝑋 → ( 𝐵 / 𝐴 ) ∈ V )
6 uniexg ( ( 𝐵 / 𝐴 ) ∈ V → ( 𝐵 / 𝐴 ) ∈ V )
7 5 6 syl ( 𝐵𝑋 ( 𝐵 / 𝐴 ) ∈ V )
8 uniqsALTV ( ( 𝐴𝐵 ) ∈ 𝑊 ( 𝐵 / 𝐴 ) = ( 𝐴𝐵 ) )
9 8 eleq1d ( ( 𝐴𝐵 ) ∈ 𝑊 → ( ( 𝐵 / 𝐴 ) ∈ V ↔ ( 𝐴𝐵 ) ∈ V ) )
10 7 9 syl5ib ( ( 𝐴𝐵 ) ∈ 𝑊 → ( 𝐵𝑋 → ( 𝐴𝐵 ) ∈ V ) )
11 10 imp ( ( ( 𝐴𝐵 ) ∈ 𝑊𝐵𝑋 ) → ( 𝐴𝐵 ) ∈ V )
12 4 11 jaoi ( ( 𝐴𝑉 ∨ ( ( 𝐴𝐵 ) ∈ 𝑊𝐵𝑋 ) ) → ( 𝐴𝐵 ) ∈ V )