Metamath Proof Explorer


Theorem ecexALTV

Description: Existence of a coset, like ecexg but with a weaker antecedent: only the restricion of R by the singleton of A needs to be a set, not R itself, see e.g. eccnvepex . (Contributed by Peter Mazsa, 22-Feb-2023)

Ref Expression
Assertion ecexALTV ( ( 𝑅 ↾ { 𝐴 } ) ∈ 𝑉 → [ 𝐴 ] 𝑅 ∈ V )

Proof

Step Hyp Ref Expression
1 df-ec [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } )
2 snex { 𝐴 } ∈ V
3 imaexALTV ( ( 𝑅 ∈ V ∨ ( ( 𝑅 ↾ { 𝐴 } ) ∈ 𝑉 ∧ { 𝐴 } ∈ V ) ) → ( 𝑅 “ { 𝐴 } ) ∈ V )
4 3 olcs ( ( ( 𝑅 ↾ { 𝐴 } ) ∈ 𝑉 ∧ { 𝐴 } ∈ V ) → ( 𝑅 “ { 𝐴 } ) ∈ V )
5 2 4 mpan2 ( ( 𝑅 ↾ { 𝐴 } ) ∈ 𝑉 → ( 𝑅 “ { 𝐴 } ) ∈ V )
6 1 5 eqeltrid ( ( 𝑅 ↾ { 𝐴 } ) ∈ 𝑉 → [ 𝐴 ] 𝑅 ∈ V )