Metamath Proof Explorer


Theorem ecexALTV

Description: Existence of a coset, like ecexg but with a weaker antecedent: only the restricion of R by the singleton of A needs to be a set, not R itself, see e.g. eccnvepex . (Contributed by Peter Mazsa, 22-Feb-2023)

Ref Expression
Assertion ecexALTV R A V A R V

Proof

Step Hyp Ref Expression
1 df-ec A R = R A
2 snex A V
3 imaexALTV R V R A V A V R A V
4 3 olcs R A V A V R A V
5 2 4 mpan2 R A V R A V
6 1 5 eqeltrid R A V A R V