Metamath Proof Explorer


Theorem eccnvepex

Description: The converse epsilon coset exists. (Contributed by Peter Mazsa, 22-Mar-2023)

Ref Expression
Assertion eccnvepex A E -1 V

Proof

Step Hyp Ref Expression
1 snex A V
2 cnvepresex A V E -1 A V
3 ecexALTV E -1 A V A E -1 V
4 1 2 3 mp2b A E -1 V