Description: Existence of a coset, like ecexg but with a weaker antecedent: only the restricion of R by the singleton of A needs to be a set, not R itself, see e.g. eccnvepex . (Contributed by Peter Mazsa, 22-Feb-2023)
|- ( ( R |` { A } ) e. V -> [ A ] R e. _V )
|- [ A ] R = ( R " { A } )
|- { A } e. _V
|- ( ( R e. _V \/ ( ( R |` { A } ) e. V /\ { A } e. _V ) ) -> ( R " { A } ) e. _V )
|- ( ( ( R |` { A } ) e. V /\ { A } e. _V ) -> ( R " { A } ) e. _V )
|- ( ( R |` { A } ) e. V -> ( R " { A } ) e. _V )