Metamath Proof Explorer


Theorem ecexALTV

Description: Existence of a coset, like ecexg but with a weaker antecedent: only the restricion of R by the singleton of A needs to be a set, not R itself, see e.g. eccnvepex . (Contributed by Peter Mazsa, 22-Feb-2023)

Ref Expression
Assertion ecexALTV
|- ( ( R |` { A } ) e. V -> [ A ] R e. _V )

Proof

Step Hyp Ref Expression
1 df-ec
 |-  [ A ] R = ( R " { A } )
2 snex
 |-  { A } e. _V
3 imaexALTV
 |-  ( ( R e. _V \/ ( ( R |` { A } ) e. V /\ { A } e. _V ) ) -> ( R " { A } ) e. _V )
4 3 olcs
 |-  ( ( ( R |` { A } ) e. V /\ { A } e. _V ) -> ( R " { A } ) e. _V )
5 2 4 mpan2
 |-  ( ( R |` { A } ) e. V -> ( R " { A } ) e. _V )
6 1 5 eqeltrid
 |-  ( ( R |` { A } ) e. V -> [ A ] R e. _V )