Metamath Proof Explorer


Theorem imaexALTV

Description: Existence of an image of a class. Theorem 3.17 of Monk1 p. 39. (cf. imaexg ) with weakened antecedent: only the restricion of A by a set needs to be a set, not A itself, see e.g. cnvepimaex . (Contributed by Peter Mazsa, 22-Feb-2023) (Proof modification is discouraged.)

Ref Expression
Assertion imaexALTV
|- ( ( A e. V \/ ( ( A |` B ) e. W /\ B e. X ) ) -> ( A " B ) e. _V )

Proof

Step Hyp Ref Expression
1 imassrn
 |-  ( A " B ) C_ ran A
2 rnexg
 |-  ( A e. V -> ran A e. _V )
3 ssexg
 |-  ( ( ( A " B ) C_ ran A /\ ran A e. _V ) -> ( A " B ) e. _V )
4 1 2 3 sylancr
 |-  ( A e. V -> ( A " B ) e. _V )
5 qsexg
 |-  ( B e. X -> ( B /. A ) e. _V )
6 uniexg
 |-  ( ( B /. A ) e. _V -> U. ( B /. A ) e. _V )
7 5 6 syl
 |-  ( B e. X -> U. ( B /. A ) e. _V )
8 uniqsALTV
 |-  ( ( A |` B ) e. W -> U. ( B /. A ) = ( A " B ) )
9 8 eleq1d
 |-  ( ( A |` B ) e. W -> ( U. ( B /. A ) e. _V <-> ( A " B ) e. _V ) )
10 7 9 syl5ib
 |-  ( ( A |` B ) e. W -> ( B e. X -> ( A " B ) e. _V ) )
11 10 imp
 |-  ( ( ( A |` B ) e. W /\ B e. X ) -> ( A " B ) e. _V )
12 4 11 jaoi
 |-  ( ( A e. V \/ ( ( A |` B ) e. W /\ B e. X ) ) -> ( A " B ) e. _V )