Metamath Proof Explorer


Theorem imaexALTV

Description: Existence of an image of a class. Theorem 3.17 of Monk1 p. 39. (cf. imaexg ) with weakened antecedent: only the restricion of A by a set needs to be a set, not A itself, see e.g. cnvepimaex . (Contributed by Peter Mazsa, 22-Feb-2023) (Proof modification is discouraged.)

Ref Expression
Assertion imaexALTV A V A B W B X A B V

Proof

Step Hyp Ref Expression
1 imassrn A B ran A
2 rnexg A V ran A V
3 ssexg A B ran A ran A V A B V
4 1 2 3 sylancr A V A B V
5 qsexg B X B / A V
6 uniexg B / A V B / A V
7 5 6 syl B X B / A V
8 uniqsALTV A B W B / A = A B
9 8 eleq1d A B W B / A V A B V
10 7 9 syl5ib A B W B X A B V
11 10 imp A B W B X A B V
12 4 11 jaoi A V A B W B X A B V