Metamath Proof Explorer


Theorem cnvepnep

Description: The membership (epsilon) relation and its converse are disjoint, i.e., _E is an asymmetric relation. Variable-free version of en2lp . (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022)

Ref Expression
Assertion cnvepnep E -1 E =

Proof

Step Hyp Ref Expression
1 df-eprel E = y x | y x
2 1 cnveqi E -1 = y x | y x -1
3 cnvopab y x | y x -1 = x y | y x
4 2 3 eqtri E -1 = x y | y x
5 df-eprel E = x y | x y
6 4 5 ineq12i E -1 E = x y | y x x y | x y
7 inopab x y | y x x y | x y = x y | y x x y
8 6 7 eqtri E -1 E = x y | y x x y
9 en2lp ¬ y x x y
10 9 gen2 x y ¬ y x x y
11 opab0 x y | y x x y = x y ¬ y x x y
12 10 11 mpbir x y | y x x y =
13 8 12 eqtri E -1 E =