Metamath Proof Explorer


Theorem cnvimass

Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007)

Ref Expression
Assertion cnvimass A-1BdomA

Proof

Step Hyp Ref Expression
1 imassrn A-1BranA-1
2 dfdm4 domA=ranA-1
3 1 2 sseqtrri A-1BdomA