Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
cnvresrn
Next ⟩
ecin0
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnvresrn
Description:
Converse restricted to range is converse.
(Contributed by
Peter Mazsa
, 3-Sep-2021)
Ref
Expression
Assertion
cnvresrn
⊢
R
-1
↾
ran
⁡
R
=
R
-1
Proof
Step
Hyp
Ref
Expression
1
df-rn
⊢
ran
⁡
R
=
dom
⁡
R
-1
2
1
reseq2i
⊢
R
-1
↾
ran
⁡
R
=
R
-1
↾
dom
⁡
R
-1
3
relcnv
⊢
Rel
⁡
R
-1
4
dfrel5
⊢
Rel
⁡
R
-1
↔
R
-1
↾
dom
⁡
R
-1
=
R
-1
5
3
4
mpbi
⊢
R
-1
↾
dom
⁡
R
-1
=
R
-1
6
2
5
eqtri
⊢
R
-1
↾
ran
⁡
R
=
R
-1