Metamath Proof Explorer


Theorem cnvresrn

Description: Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021)

Ref Expression
Assertion cnvresrn R -1 ran R = R -1

Proof

Step Hyp Ref Expression
1 df-rn ran R = dom R -1
2 1 reseq2i R -1 ran R = R -1 dom R -1
3 relcnv Rel R -1
4 dfrel5 Rel R -1 R -1 dom R -1 = R -1
5 3 4 mpbi R -1 dom R -1 = R -1
6 2 5 eqtri R -1 ran R = R -1